海外論文紹介

論文タイトル：Coxackievirus and Adenovirus Receptor, a Tight Junction Membrane Protein, Is Expressed in Glomerular Podocytes in the Kidney


紹介者：鈴木仁（福島県立医科大学医学部小児科）

ウイルスの腎疾患への関与については、実地臨床で、ウイルス感染が腎疾患の経過に様々な形で影響を与えること、および筆者らのコクサッキウイルスによるマウスの実験性腎炎の研究などで示されてきた。このように腎はウイルス増殖を受けやすい臓器の一つであるし、ヒトは生涯を通じて頻回にウイルス感染を受けることを考えると、腎疾患の病因としてウイルスが果たしている役割は大きい。

一般にウイルスはどのような細胞にも感染するわけではなく、感染が成立するためには細胞表面に相対するレセプターの存在が必要である。すなわち、ある細胞がどのようなレセプターを有しているかにより、ウイルスの親和性が異なってくる。コクサッキウイルスもレセプターに異なって感染することが知られており、その代表的なレセプターとして近年、Coxackievirus and adenovirus receptor (CAR) が同定されている。この CAR はウイルスおよびヒトの細胞表面に存在する 46 kDa の膜蛋白であり、構造的に免疫グロブリンスーパーファミリーに属している。その生理的機能は不明であるが、最近、細胞間接着や分化、発達に関連している可能性が示唆される注目されている。

CAR の発現は、中権神経をはじめとして多くの臓器で認められるが、その局在および機能は明らかでない。著者らは、CAR の腎における役割を検討するために、正常成熟ラット腎および病的ラット腎における CAR の局在と系球体上皮細胞での特異的な変化について検索した。

対象と方法

対象として WKY ラットの正常腎、および病的腎として 5 mg/100 g 体重の puromycin aminonucleoside (PAN) を 1 回静注して作成した PAN 腎症を用いた。PAN 静注後 2 日、4 日、6 日、10 日目に腎を摘出し、sieving 法を用いて糸球体を単離して以下の実験に供した。

CAR オリゴペプチドに対する抗体を作成し、腎皮質、髄質および単離糸球体それぞれから抽出した蛋白を試料としてウェスタンプローティングを行った。

ラット CAR 遺伝子の cDNA をもとにアンチセンス cRNA プロープを作成し、既報に従って Ribonuclease protection assay (RPA) 法を行い、CAR mRNA を定量した。腎における局在は、マチルカルノア固定し、組織を用いた CAR に対する免疫染色と免疫電子顕微鏡法で観察した。

結果

PAN 腎症における糸球体の蛋白発現は、2 日目で正常腎の 2.4 倍、4 日目で 3.0 倍、6 日目で 2.6 倍、10 日目で 2.0 倍の CAR の増加をみた。また、CAR mRNA の発現は 1 日目で正常の 2.7 倍、2 日目で 3.3 倍、4 日目で 2.6 倍、10 日目で 1.5 倍という推移を示した。

CAR の免疫染色では、正常腎糸球体は弱陽性を示し、ポーマン囊上皮、遠位尿細管、集合管上皮細胞にも明らかな陽性像を認めた。PAN 腎症の 4 日目で糸球体上皮細胞の染色性が増強し、10 日目では 4 日目に比して強弱していた。

免疫電顕では、正常腎の糸球体上皮細胞において、スリット膜と異なる細胞間接着部位に CAR を示す金粒子を認めた。またポーマン囊上皮、遠位尿細管、集合管上皮細胞でも細胞間接着部位、特に Tight junction (TJ) に一致して陽性像を示した。PAN 腎症の糸球体上皮細胞

92 (148)
考察・結論

以上の結果から、成熟動物の腎で、46 kDa の CAR が、系球体を中心として、一部尿細管に発現していることが明らかになった。免疫電子顕微鏡的検討の結果、CAR は系球体上皮細胞においてはスリット膜を介さない上皮細胞間接着部位に局在し、尿細管上皮では TJ に認められた。これらの CAR が細胞接着に関わっていることを強く示唆していると考えた。PAN 腎症での CAR 発現亢進と系球体上皮細胞の発生・分化過程における顕著な発現とを相関させると、CAR は細胞の分化・成熟および再生過程に関与する細胞間接着分子の一つである可能性が考えられた。

以上が本論文の概要である。腎疾患の病態とウイルスとの関連については、従来から多くの検討がなされ、ウイルス感染が腎炎を惹起し、あるいは腎炎、そしてネフローゼ症候群の進展に何らかの形で影響することが示されてきた。ヒトのかぜ状候群の代表的病因ウイルスであるコクサキーウイルス中、IgA 腎症の類似のメカニズムが腎炎の惹起を引き起こすことが報告されている23)46)。IgA 腎症の病因除はまだ不明であるが、気道あるいは消化道感染に引き続いて腎炎の発症をみ、尿所見の増悪をみることができる。これらウイルスがその発症、進展に関与している可能性は高い。

一方、先に述べたが、ウイルス感染が成立するためには、まず、細胞表面にあるそのウイルス特有のレセプターや結合することが必要である。すなわち、ウイルスレセプターが発現している細胞や臓器などを検討することに、ウイルス感染が生じた際に、どのような変化、病変が生じるのかを推測することが可能になるはずである。

コクサキーウイルスの代表的レセプターである CAR に関しては、生理的機能として、各種上皮細胞において細胞間接着に関与しているとの報告があお、注目されてきているが、腎臓での CAR に関する詳細な検討はこれまでになされていなかった。

CAR の臓器別分布状況を検討した成績では、ラット、マウスともに肝、結腸、および肺組織での発現が特に著明であり、これは消化器症状を伴うことが多いコクサキーウイルスの臨床症状の特徴を裏付ける結果として興味深い。さらにこれら消化器臓器の他に腎や心臓にもそのメッセージの発現を認めることは、このウイルスがこれらの臓器にも直接感染することを意味している5)。

心臓に関しては、ヒトの拡張型心筋症のモデルである実験性的心筋劣化ラットにおいて CAR が再発現することが示された報告があり、生後2週、新生児期に発現が増強することから、心臓の形態変生の何らかの作用を持つ可能性を考え、細胞間の接触、細胞間接着に関わっていること、炎症の急性期ではなく、障害された心筋の再生に関与することが推察されている9)。

著者らが述べているように腎内の CAR の発現をみた結果では、系球体を中心として皮質部においてその発現が顕著であり、これはコクサキーウイルスが直接、系球体固有細胞にも感染し、腎病変を惹起したり、急性増悪に関与する可能性を示唆するものである。

本研究は、WKY ラットを用いた正常腎および PAN 腎症および培養細胞での CAR の発現分布、詳細な観察の観察により、CAR が上皮細胞の細胞間接着部位に局在し、PAN 腎症の系球体上皮細胞で、細胞間接着の部位に発現が一過性に増加することを示した。すなわち、これは CAR が系球体上皮細胞障害時に増加する TJ と呼ばれる細胞間接着装置の構成成分であるを示している。

正常腎系球体上皮細胞の細胞間には、スリット膜と呼ばれる構造が存在するが、腎炎を惹起した系球体上皮細胞ではスリット膜が消失し、この TJ と呼ばれる細胞間接着装置が認められるようになる。その構成蛋白や役割などについて不明な部分が多く、従来、多くの細胞において、いくつかの TJ 構成蛋白が発見されてきたが、系球体上皮細胞の TJ 構成蛋白についてでは報告が少ない。ゆえにこの研究において、CAR が系球体上皮細胞の TJ を構成する膜蛋白であり、系球体上皮細胞に障害が起こった際には、mRNA の転写、そして蛋白質の再分布により CAR の発現が制御され、増加することができるが示されたことは、今後、系球体上皮細胞の特性を解明していくうえで、意義深い成果であると考えられる。

また、障害された細胞で、ウイルスレセプターである CAR の発現増加が示されたことは、ウイルスと腎疾患との関連や、アデノウイルスを用いた遺伝子治療への応用などを考えうるうえでも示唆に富む知見であると考える。

文献
