Effect of Locomotor Respiratory Rhythm on Ventilation and Gas Exchange Responses During Arm Ergometry Exercise

Toshiaki MIYAMOTO, PT, MS, Toshio MORITANI, PhD
Laboratory of Applied Physiology, Graduate School of Human and Environmental Studies, Kyoto University

Toshiaki MIYAMOTO, PT, MS
Department of Rehabilitation, Kyoto City Hospital

Akira TAMAKI, PT, PhD
School of Rehabilitation, Hyogo University of Health Sciences

Purpose: The aim of this study was to determine the possible existence of locomotor respiratory coupling (LRC) and examine the effect of imposing LRC on ventilation and gas exchange responses during arm ergometry exercise.

Methods: Ten healthy subjects performed incremental exercise testing to determine exercise intensity. Arm ergometry exercise with constant work loads was then carried out either under spontaneous breathing or with different entrainment breathings in which respiration/cranking frequency (f_r/f_c ratio) were fixed at 1/1, 2/3, 1/2, 2/5 and 1/3.

Results: During spontaneous breathing, all the subjects exhibited the various f_r/f_c, the most commonly observed f_r/f_c was 2/5 under spontaneous breathing. The imposed LRC patterns did not significantly affect the actual LRC rate. Still, dead space ventilation ratio was significantly reduced at ratio of 2/5 and 1/3, respectively.

Conclusions: These results suggest that the entrainment patterns during arm ergometry exercise was similar to that seen in studies of pedaling exercise, but to a much less extent. In addition, the ventilatory efficiency was affected by f_r/f_c independent of actual LRC apparent rate.