The Airway Occlusion Pressure During Upper Extremity Exercise in Healthy Adults:
Differences between Supported and Unsupported Arm Exercise

Akiko AIHARA, PT, MS, Takeshi KERA, PT, PhD
Course of Physical Therapy, Department of Rehabilitation, Faculty of Health Science, Nihon Institute of Medical Science

Akiko AIHARA, PT, MS
Graduate School of Health Science (Major in Physical Therapy by Distance Learning), Kibi International University

Kotaro TAMARI, PT, PhD, Shigeki YOKOYAMA, PT, PhD, Hirotoshi MOTODA, PT, PhD
Department of Physical Therapy, School of Health Science and Social Welfare, Kibi International University

Purpose: The purpose of this study was to examine the effect of supported and unsupported arm exercise on the 2 dyspnea indexes, namely, airway occlusion pressure (P_{01}) and the ratio of the change in ventilation to the change in P_{01} ($\Delta VE/\Delta P_{01}$), by using symptom-limited exercise stress testing.

Methods: Twenty-one healthy male volunteers performed both these exercises with 3 increments (stage 1 to 3) in oxygen consumption, defined as exercise intensity. Each stage was performed at the same intensity between the 2 exercises, to aid in the comparison. The P_{01}, VE, carbon dioxide production (VCO_2), respiratory frequency (f), ventilatory equivalent of carbon dioxide (VE/VCO_2) and the Borg scale rating of perceived dyspnea and arm muscle exertion was obtained at each stage.

Results: The P_{01} was significantly greater in the unsupported arm exercise than in the supported arm exercise ($P < 0.001$); however, there was no difference in $\Delta VE/\Delta P_{01}$ between the 2 exercises. With higher load, the corresponding VE, VCO_2, f, VE/VCO_2 and the Borg scale rating of perceived dyspnea were significantly greater in the unsupported arm exercise than in the supported arm exercise.

Conclusions: The results of this study indicate that there is a greater possibility of developing dyspnea during an unsupported arm exercise than during a supported arm exercise, possibly because of the greater ventilatory demand in the former.