しいたけ胞子吸入による過敏性肺臓炎の3症例と
関連する疫学調査結果について

居村 剛*、坂東 玲芳*、和田 泰男*、福島 泰*、
松浦 一**、井上 博之**、蔵山 哲夫**、武田 英雄***
市原 照由***、加藤 和則***

農業アレルギーの調査研究の一つの対象として、しいたけ栽培者を選び、その胞子による過敏性
肺臓炎の3例を発見報告した。これらの3症例は、しいたけ胞子アレルゲンに対する血清沈降抗体
がみられ、ことに、その1例において、しいたけ胞子および、抽出アレルゲンによる誘発反応を試
み、陽性所見を得た。

しいたけ農家群には、高い自然の呼吸器症状がみられるが、その原因は単一でなく、アレルギー
機序は、その一部の原因であろうと考えられる。しいたけ胞子抽出アレルゲンの皮内反応陽性率は
低く、そのアレルギー性は高くないと考えられ、この疾患には、アレルギー素因が大きい要素を占
める。

この他、Mushroom worker’s lung等との関連や、のこ胞子類によるアレルギー疾患との関係
も論じた。

①アレルギー性過敏性肺(臓)炎 ②しいたけ胞子肺 ③アレルゲン吸入誘発テスト ④職業アレ
ルギー ⑤血清沈降抗体

はじめに

農業の繁栄、機械化、施設園芸の著しい増加等の例
にみられるように、日本における農業の変貌は、まこ
とに激しいものがある。これに伴って、農業の中毒、
農業機械による事故が増大し、また、施設園芸による
農業者の健康障害も、情報栽培とは、その温度、湿度
が全く異なるための影響により、また、栽培作業その
ものによる労働などによって、漸次増加しつつあるよ
うに思われる。

従来、ハウス病と言われたものの本態は、気候不適
応症状群であるとされているが、このハウス内外の気
候の影響によるものの上に、最近では、その特殊な閉
鎖環境下で栽培される作物そのものによる健康への影
響も、種々論議され、研究されるようになってきた。

すなわち、くも粉症や、トマト、きゅうり、メロ
ン、菊などによる気温障害等の報告である。

私達は、農業に起因するアレルギー疾患の調査研究
を開始するにあたって、徳島県下の15種の農作物別農
家群の各戸に、アンケート調査を施行し、アレルギー
様症状の発現状況を予備的に調査した。表1は、この
結果をまとめてみで、29.5%の有症率を示した。し
かし、農業者各個人でなく、各戸配布としたので、対
象農業者は、少なくとも、この2倍以上であり、有症
者率は、この点を考慮し割引して考える必要がある。
この結果を概観すると、しっかりの例を除いて、そ
の有症率はほとんどが、20％以上であり、稲作を標準
とした戦前より引かれた農業では比較的少なく、最近
の施設園芸等、いわゆる生産性の高いものほど、有症
率が高いようにみえる。これらの農家群のうち、私達
は、稲作栽培を主とし、すでに、一度研究対象とした
ことのあるレタス農家と、近時きずまず盛んとなりつ
つあるハウス栽培のしいたけ農家群を農業アレルギー
の研究対象とした。

それに、多様、農業、中葉、小林らは、ビニール
| 対象作物 | 配布数 | 回収数 | 回収率 | 有症状数 | 有症状率（%） | 性別 | 症状の内訳 |現
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>チューリップ</td>
<td>40</td>
<td>12</td>
<td>30.0</td>
<td>6</td>
<td>50.0</td>
<td>男：1 女：5</td>
<td>睑膜炎 鼻炎 嗜気 皮膚炎 全身 不明</td>
<td></td>
</tr>
<tr>
<td>オクラ</td>
<td>60</td>
<td>9</td>
<td>15.0</td>
<td>2</td>
<td>22.2</td>
<td>男：1 女：1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>らっきょ</td>
<td>50</td>
<td>42</td>
<td>84.0</td>
<td>3</td>
<td>7.1</td>
<td>男：1 女：2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>にんにく</td>
<td>30</td>
<td>5</td>
<td>16.7</td>
<td>1</td>
<td>20.0</td>
<td>男：1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>種子</td>
<td>50</td>
<td>25</td>
<td>50.0</td>
<td>6</td>
<td>24.0</td>
<td>男：2 女：4</td>
<td>症状の詳細を示す。</td>
<td></td>
</tr>
<tr>
<td>ハウスみかん</td>
<td>120</td>
<td>40</td>
<td>33.3</td>
<td>16</td>
<td>40.0</td>
<td>男：1 女：13</td>
<td>症状の詳細を示す。</td>
<td></td>
</tr>
<tr>
<td>レタス</td>
<td>120</td>
<td>112</td>
<td>93.3</td>
<td>30</td>
<td>26.8</td>
<td>男：7 女：14</td>
<td>症状の詳細を示す。</td>
<td></td>
</tr>
<tr>
<td>水稲</td>
<td>100</td>
<td>100</td>
<td>100.0</td>
<td>25</td>
<td>25.0</td>
<td>男：7 女：15</td>
<td>症状の詳細を示す。</td>
<td></td>
</tr>
<tr>
<td>たけのこ</td>
<td>100</td>
<td>91</td>
<td>91.0</td>
<td>27</td>
<td>29.0</td>
<td>男：2 女：14</td>
<td>症状の詳細を示す。</td>
<td></td>
</tr>
<tr>
<td>酪農</td>
<td>70</td>
<td>57</td>
<td>81.4</td>
<td>20</td>
<td>35.1</td>
<td>男：1 女：17</td>
<td>症状の詳細を示す。</td>
<td></td>
</tr>
<tr>
<td>ハウスいちご</td>
<td>50</td>
<td>30</td>
<td>60.0</td>
<td>9</td>
<td>30.0</td>
<td>男：3 女：6</td>
<td>症状の詳細を示す。</td>
<td></td>
</tr>
<tr>
<td>しいたけ</td>
<td>50</td>
<td>22</td>
<td>44.0</td>
<td>10</td>
<td>45.5</td>
<td>男：4 女：5</td>
<td>症状の詳細を示す。</td>
<td></td>
</tr>
<tr>
<td>ハウスなす</td>
<td>80</td>
<td>23</td>
<td>28.8</td>
<td>12</td>
<td>52.2</td>
<td>男：8 女：4</td>
<td>症状の詳細を示す。</td>
<td></td>
</tr>
<tr>
<td>栓柿</td>
<td>70</td>
<td>58</td>
<td>82.9</td>
<td>16</td>
<td>27.6</td>
<td>男：3 女：5</td>
<td>症状の詳細を示す。</td>
<td></td>
</tr>
<tr>
<td>計</td>
<td>1,040</td>
<td>638</td>
<td>61.3</td>
<td>188</td>
<td>29.5</td>
<td>男：92 女：96</td>
<td>症状の詳細を示す。</td>
<td></td>
</tr>
</tbody>
</table>

ハウスによるしいたけ栽培者に、気管支喘息、アレルギー性気管支炎、また、過敏性肺炎がみられることが報告されている。私達に、この研究調査の過程において、過敏性肺炎を発見し、確定診断をなし得たので、まず、この3症例を示し、ついで、疫学調査結果を報告する。

なお、レタス家系の研究結果は、別稿として報告した。

I. 過敏性肺膿炎症例

1. 28才 男 未育 しいたけ栽培専業

診断名 しいたけ胞子吸入による過敏性肺膿（チ）炎
（しいたけ胞子肺）

主訴 しいたけ胞子吸入後の発熱

既往歴 16才時発熱（コレラフェ＝ニール）過去3回、同様の薬物疹

家族歴 両祖父母に気管支喘息、父に気管支喘息、兄弟に同様の傾向、母に、地にはない。父母は、30年間の経験を有するしいたけ栽培専業の農家で同居

農業状況 両親と患者および雇人4人程度でしいたけ栽培従事。家は、徳島市一宮町にあり、層山山麓の南面した小平の平地より20mほど登ったところにあって、住宅に隣接して、しいたけ栽培のニールハウス（フレーム）を大きく2カ所所有している。フレームは南面し、温暖、ホダ場も近いが、水の便がやや悪い。

現病歴および経過 患者は、中、高校生時代より、しいたけの収穫、袋づめ等で家業の手伝いをしていた。高校卒業後の20才時より、本格的にニールハウスによるしいたけ栽培に従事し、初めてまもなく、数度、初秋より冬にかけての、しいたけ胞子が、数日間に発生したフレーム内で、かつ、暖房をかけ、しめ切った状態で収穫作業等を数時間施行したときなどには、身体異常感、全身倦怠感、急で、悪寒発熱、全身関節痛、呼吸閉塞感、また、乾燥咳、喀痰（粘液痰）をきたす等の症状をみるようになった。当初、かかる症状のため、近医を受診し、アレルギーによるものだろうとされている。このような発症は、過去に、数回以上経験しており、体温は38.5℃以上に達する。しかし、安静にしていると翌日には、回復し、後遺症はないが、初期の頃は、原因も不明で、3日間つづけて発熱をきたしたこともある。同様な症状は、症例2が、経験していることをその後知ったので、以後、上述のとおり環境下での労働を避けるように努めているので、最近2〜3カ年は、このような発熱をみるほどの発作
### 表2．症例1の諸検査所見

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>尿</td>
<td>異常なし</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>血液</td>
<td>Hb 15.4 g/dl, Red 496×10⁴/μm³ White 5900/μm³, Ht 46.6%, Plat 22.2×10⁴/μm³</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hemogram : St 2, Seg. 62, Eos 5, (%) Bas1, Lym. 21.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>血液化学</td>
<td>Na 155, K 4.5, Cl 109 meq/ℓ</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>T.P. 7.3 g/dl, alb 68.1%, α₁ glob 3.5%, α₂ glob 7.5%, β 7.8%, γ glob 12.9%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>T.chol. 175 mg/dl, HDL-C 85 mg/dl, TG 72 mg/dl, GOT 24 IU, GPT 25 IU, LDH 395 IU, Alp 112 IU, ZTT 6.5 u, γ GTP 8 IU, CPK 102 IU, Bil 0.6 mg/dl, Bun 13.8 mg/dl, CRP (−), ESR 2/h, 5/2 h, B.S. 88 mg/dl.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>肺機能</td>
<td>TV 0.23ε, IRV 1.71ε, ERV 2.32ε, VC 4.26ε, VCP 4.04ε, %VC 105.4%, FEV₁ 3.95ε, FVC 4.14ε, FEV₁/0.75 95.4%, FEV₁/VCP 97.7%, PFR 10.78ε/sec, V₂5 2.71ε/sec, V₂5/H 16.4ε/min, MV 7.5ε/sec/min, MVV 182.7ε/min.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>血液ガス</td>
<td>PH 7.377, PCO₂ 37.3 Torr, PaO₂ 95.0 Torr, Tot. CO₂ 23.1 Torr, HCO₃ 22.1 Torr, Base Excess−2.0.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### 表3．しぐたけ脳変態症による吸入誘発テスト (0.02 g/ml) (陽性所見のみ)

<table>
<thead>
<tr>
<th></th>
<th>前</th>
<th>8時間後</th>
<th>12時間後</th>
<th>40時間後</th>
<th>7,100</th>
</tr>
</thead>
<tbody>
<tr>
<td>末梢白血球数</td>
<td>7,300</td>
<td>12,300</td>
<td>12,900</td>
<td>7,100</td>
<td></td>
</tr>
<tr>
<td>白血球像</td>
<td>正常 左方移動</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>喘息中細胞数/μl</td>
<td>75</td>
<td>90</td>
<td>5,500</td>
<td>−</td>
<td></td>
</tr>
<tr>
<td>同エキシジン細胞(%)</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>−</td>
<td></td>
</tr>
</tbody>
</table>

対照健康者 全て変化なし

### 表4．しぐたけ脳変態症 (0.85 mg/ml)による吸入誘発テスト——臨床所見の変化——

<table>
<thead>
<tr>
<th></th>
<th>前</th>
<th>3時間後</th>
<th>6時間後</th>
<th>12時間後</th>
<th>24時間</th>
</tr>
</thead>
<tbody>
<tr>
<td>体温（℃）</td>
<td>36.8</td>
<td>37.1</td>
<td>37.9</td>
<td>36.8</td>
<td>36.6</td>
</tr>
<tr>
<td>脈拍数</td>
<td>79</td>
<td>68</td>
<td>96</td>
<td>84</td>
<td>70</td>
</tr>
<tr>
<td>呼吸数</td>
<td>19</td>
<td>12</td>
<td>13</td>
<td>18</td>
<td>17</td>
</tr>
<tr>
<td>血压</td>
<td>136/76</td>
<td>152/98</td>
<td>142/80</td>
<td>140/76</td>
<td>136/74</td>
</tr>
<tr>
<td>全身倦怠感</td>
<td>−</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>咳、喘息</td>
<td>±</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>呼吸閉塞感</td>
<td>−</td>
<td>±</td>
<td>+</td>
<td>+</td>
<td>−</td>
</tr>
</tbody>
</table>

対照健康者には、生理的変化以外のものは認められなかった。

### 表5．しぐたけ脳変態症 (0.85 mg/ml)による吸入誘発テスト——検査所見の変化——

<table>
<thead>
<tr>
<th></th>
<th>前</th>
<th>3時間後</th>
<th>6時間後</th>
<th>12時間後</th>
<th>24時間</th>
</tr>
</thead>
<tbody>
<tr>
<td>V.C. (cc)</td>
<td>3,990</td>
<td>3,960</td>
<td>3,820</td>
<td>3,790</td>
<td>3,980</td>
</tr>
<tr>
<td>FEV₁</td>
<td>3,900</td>
<td>3,900</td>
<td>3,700</td>
<td>3,400</td>
<td>3,650</td>
</tr>
<tr>
<td>白血球数 (μl)</td>
<td>7,400</td>
<td>12,500</td>
<td>13,600</td>
<td>8,400</td>
<td></td>
</tr>
<tr>
<td>好酸球数 (μl)</td>
<td>168</td>
<td>300</td>
<td>458</td>
<td>252</td>
<td></td>
</tr>
<tr>
<td>血沈 (1時間値)</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>CRP</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>+</td>
<td>−</td>
</tr>
<tr>
<td>PaO₂ Torr</td>
<td>95.0</td>
<td>73.9</td>
<td>72.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH₅₀ (μl/ml)</td>
<td>30.9</td>
<td>28.1</td>
<td>29.5</td>
<td>33.5</td>
<td></td>
</tr>
<tr>
<td>胸部X線所見</td>
<td>−</td>
<td>+</td>
<td>−</td>
<td>−</td>
<td>+</td>
</tr>
</tbody>
</table>

（同時に施行した健康対照者には無く変化なし）

は経験しないようになったと言う。

現症と診断に至る経過および誘発試験結果

身長165 cm, 体重58 kg, 腹部疼痛は他に理学的異常所見なし。

血圧128/80 mmHg, 胸部X線所見, ECG, 肺機能, その他血液学的, 血液化学的, 腹膜液の異常を認めない。（表2）

以上の発症状況, 検査データー, 等より, 肺炎, 小林らの初めて発見したアレルギー性過敏性肺機能と考えられたので, まず, 環境誘発テストを企てたが, 特に本年（1983）は乾陏のため, しぐたけ脳の発生少なく, 環境誘発を施行するに至らず中止し, 病院にて, 種々の誘発テストを施行することにした。まず, しぐたけ脳アレルゲン（蛋白量0.07 mg/ml）による吸入テストを施行したが, 症状発現は全くみられず, しぐたけ脳変態症（0.02 g/ml）による誘発を認めた。この結果, 表3に示したとく, 1秒量の減少や発熱等の臨床上の変化は認められなかったけれども, 白血球増多, 喘息中細胞数の増加が明らかとなった。以上より一応の目処を得たので, アレルゲンを約10倍の濃度（蛋白量0.85 mg/ml）とし, これによる誘発テストを施行した。この誘発試験には, 日本アレルギー学会吸入試験標準化委員会の決定した方法と判定規準があたり, 其に従って, 今回実施したとみなした。

この結果は, 表4, 5に示した通りで, まず, 臨床症状として, 発熱および, 全身倦怠, 呼吸閉塞感, 下
表6 症例1の免疫学的検査所見

<table>
<thead>
<tr>
<th>免疫グロブリン (mg/ml)</th>
<th>即時反応</th>
<th>遅延反応</th>
</tr>
</thead>
<tbody>
<tr>
<td>IgG</td>
<td>1343</td>
<td>(1090–1744)</td>
</tr>
<tr>
<td>IgA</td>
<td>194</td>
<td>(147–340)</td>
</tr>
<tr>
<td>IgM</td>
<td>84</td>
<td>(70–170)</td>
</tr>
<tr>
<td>IgD</td>
<td>13.3</td>
<td>(2–12)</td>
</tr>
<tr>
<td>IgE (µ/ml)</td>
<td>84</td>
<td>(30–40)</td>
</tr>
<tr>
<td>CH₅₀ (µ/ml)</td>
<td>30.9</td>
<td>(30–40)</td>
</tr>
</tbody>
</table>

沈降抗体

- いびき：0.425 mg/ml
- いびき：0.1 mg/ml
- いびき：0.01 mg/ml
- いびき：0.001 mg/ml

免疫グロブリン

<table>
<thead>
<tr>
<th>免疫グロブリン (mg/ml)</th>
<th>即時反応</th>
<th>遅延反応</th>
</tr>
</thead>
<tbody>
<tr>
<td>IgG</td>
<td>1343</td>
<td>(1090–1744)</td>
</tr>
<tr>
<td>IgA</td>
<td>194</td>
<td>(147–340)</td>
</tr>
<tr>
<td>IgM</td>
<td>84</td>
<td>(70–170)</td>
</tr>
<tr>
<td>IgD</td>
<td>13.3</td>
<td>(2–12)</td>
</tr>
<tr>
<td>IgE (µ/ml)</td>
<td>84</td>
<td>(30–40)</td>
</tr>
<tr>
<td>CH₅₀ (µ/ml)</td>
<td>30.9</td>
<td>(30–40)</td>
</tr>
</tbody>
</table>

沈降抗体

以上のことに、職業歴、特異性検出法下における労働の症状発現。吸入試験試験による症状発現と診断の変化。いびき：0.425 mg/ml 以下ではなく、陰性であった。遲延反応（7時間後）も陽性所見はみられなかった。

一方、いびきに対する血清沈降抗体をOuchterlonyにより検出して陽性結果を得たが、農夫肺等に関係あるM. Faeni, T. Vulgaris等11種のアレルゲンに対する沈降抗体はみられなかった。免疫globは、IgEやIgA、IgGも正常値よりやや高値を示していた。

以上の結果、職業歴、特異性検出法下における労働の症状発現。吸入試験試験による症状発現と診断の変化。いびきに対する血清沈降抗体のみられることより、私達は、本症例を疑いなく、いびき：0.425 mg/ml によるアレルギー性過敏性肺気腫炎と診断した。

症例2 54才 女 某農業

既往歴 家族歴 52才頃、鉄欠乏性貧血で治療。経常的に皮膚炎をきたすと言う。子供にアレルギー性鼻炎がある。

症状と経過 この症例は、症例1の農家の雇われ農婦である。約15年程、いびき相対に従事し、開始2－3年後、とくに、栽培拡張し、暖房の導入に由来する週間栽培を開始した頃で、フレームを密閉し、その内、労働を長時間した際、また、のちに作業が特に多忙となった折など、作業開始後数時間経過した午後に3－4時頃、喉頭の閉塞感、咳が出現しつつ、発熱（38.5℃くらい）をみるようになった。仕事中、安静にしていると、数時間後には回復する。このような症状は、発病後2－3年はみられたが、最近はみられなくなった。

現症 身長151cm, 51.0 kg 胸部部に異常所見なし。血圧正常、胸部X－P、ECG異常なし。血沈1時間31 mm, 蛋白分画正常、免疫glob, IgG2550 mg/dl, IgA310, IgM204 mg/dl, IgE170/u/ml, 肺機能
正常域、白血球4900、好酸球7.0%、SK抗原による皮内反応2000倍より20倍まで陰性。しかし、胞子アレルゲンに対する沈降抗体は陽性であった。血沈の促進、IgGの増、好酸球増多等が、特徴的と異常である。

症例 3 58才 女 漬菜、したい栽培手伝い
既往歴 幼時より12才頃まで咳管支喘息をみた。じんましんもある。祖母に喘息があった。

症状と経過 健康で農業に従事。6年前よりしたい栽培の手伝いを開始したが、その後、しばらくしてより、夕方になると、全身倦怠、息切れ感、悪感、発熱をみることがあり、昨日は正常となった。

咳痰、喀痰はほとんど認めなかった。このような症状の発現は、したい栽培の成育がよく、多量に収穫する多忙でかつ長時間ハウス内、また、袋づめ作業を続けたときに発現し、最近5年間で数回以上経験したと言う。

なお、この症例で、特徴的なことは、過去2回、農協の巡回健診をうけているが、このような訴えはなく、全て異常なしとして報告されていたことで、また今後上記症例2、3の血清沈降抗体の健康コントロールとして採血し、胞子アレルゲンに対する沈降抗体を測定したところ、意外にも、強陽性を示した。

そこで、改めて詳細な問診を施行し、上記のごとき症状の発現があることが、判明した。

現症と検査所見 158.5 cm、53 kg、胸腹部に理学的異常所見なく、血圧正常域、好酸球数16.0%と増加、貧血なし。肺機能正常。ECG異常なし。胸部X線写真上、両側中下野に肺紋理増強し、小顆粒線維状陰影が認められる（図2）。CRP(−)、RA(−)、血沈値1時間28 mm、IgE200 u/ml、IgG1900 mg/dl、IgA378 mg/dl、IgM268 mg/dl、この他には、血液生化学諸検査に変化は認められなかった。すなわち、異常所見として、好酸球増多、血沈値の亢進、IgM（70－170 mg/dl）の増加、胸部X線異常等がある。

以上の第1、第3例は、第1例と同様の理由により、シイタケ胞子吸入による過敏性肺炎炎と考えられる。

II. したい栽培者に対する疫学調査結果について

(1) したい農家の環境と労働状況

対象としたしたい栽培を専業的に行なっている農家群は、徳島市の新地域に属する上八戸、一宮地区にある。最近では、徳島の住宅地として、都市化しつつある地域であるが、その自然環境は、農山村の趣をみせ、したいのホタル場に適した小山が、住宅に接して存在する。

しかし、分け、生のまま、主として、錦部やの市場に出荷され、ピューロハウスによる周年栽培であるので、冬期は避雑を必要とし、この暖房のしめ切ったハウス内に充満するしたい胞子の吸入による健康障害の発現が、容易に推測される。

現在のしたい栽培数は、両地区をあわせて、専業的農家が38戸で、その営業状況を表7に示した。この地元のしたい栽培は、近年とくに盛んになったもので、経験年数は20年あまり、一戸平均3.1名の従事者で、粗生産額は、一戸平均1千円万円といわれる。

この栽培は、いわゆる農業、農業ではないが、秋から冬に、需要上上の関係もあり、とくに多忙の時期である。

表8は、11月より12月の約1か月間の労働状況を示す。

穴あけ作業は主として、男2、菌接種は主として女子で、ホタルの選抜など重労働に属する仕事は、女子主、女子従なる。このように、直接原木を扱う作業以外は、収穫、袋づめ作業など、軽作業であるけれども、したいを直接扱う作業であり、したいによるアレルギーが、発症するとすれば、これらの作業が原因となる可能性が高い。

しかし、その1箇所子実体から、10億個が出、
その胞子の大きさは、4.8 × 8 μの卵型で、吸入に伴って十分肺胞レベルに達し、抗原となりうるものと考えられており、よくに前述のごとく、冬季暖房中、あるいは室内における袋づくめ作業時には、大量の胞子を吸入することが考えられる。

(2) しーたけ栽培農業者の有症率およびアレルギー症状

このような労働状況下で、しーたけ栽培はどのような症状を自覚するか、健康カレンダーをもちいてみた。表9は、多忙の時期である11月〜12月の約1か月間の各種症状を抽出したものである。表の左半は、これらの中に、アレルギー機序によるものも含まれていると考えられるが、右半は主として、労働そのもののによる、ことに、原木の扱いによる皮膚のあれ、筋肉、骨の過労によるものと思われる。

左半の呼吸器、鼻症状など、単なる刺激症状と思われるもののほか、喫煙による慢性気管支炎や、慢性副鼻腔炎などに起因するものも混在している。よって、これらの諸症状を、健康診断時の医学的問診により、できるだけ厳密に、アレルギー機序の可能性あるものとして抽出したもので表10である。

昭和57年9月および、58年1月の健康診断時の被検者は表10のごとく45名、各種の症状別のアレルギー様症状は45名中11名（24.4%）であった。これを詳細な問診により、しーたけそのものに関係ありと考えられるものと、その他の団象等の関係が考えられるものに分類すると、しーたけにその胞子の吸入接触等が考えられるものは13.3%に認められた。各種症状別の発症状況は表10に示した通りである。

また、農薬以外の原因として、しーたけ原木そのもの、すなわち、原木皮の飛散による吸入等が原因ではないかと訴える症例も1名認められた。

(3) アレルゲン皮内反応結果

以上のところ、アレルギーに関連ありと推測されるとする各種症状のうち、眼症状、鼻症状および呼吸器症状等は、しーたけおよび、しーたけ胞子の接触、また、吸入によることが考えられ、I型アレルギー機序による可能性がある。そこで、アレルゲン皮内反応を施行することとし、まず、病院職員のポプラテルイに、ハウスダスト、花粉類（カモガヤ、スギ、クサクサ）、穀類（ソバ粉）、サバ、野菜類（エダマメ、シイタケ、シメジ、タケノコ、ホウレン草、レタス）、羊毛、キス、

<table>
<thead>
<tr>
<th>表11．アレルゲン皮内即時反応陽性率</th>
</tr>
</thead>
<tbody>
<tr>
<td>被検者数</td>
</tr>
<tr>
<td>(18年、女7)</td>
</tr>
<tr>
<td>平均年令</td>
</tr>
<tr>
<td>ハウスダスト</td>
</tr>
<tr>
<td>スギ</td>
</tr>
<tr>
<td>シイタケ</td>
</tr>
<tr>
<td>シメジ</td>
</tr>
<tr>
<td>レタス</td>
</tr>
<tr>
<td>カンジタ</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>表12．しーたけアレルゲンによる皮内反応結果</th>
</tr>
</thead>
<tbody>
<tr>
<td>非農業者群</td>
</tr>
<tr>
<td>対照非農業者群</td>
</tr>
<tr>
<td>対照非農業者群</td>
</tr>
<tr>
<td>乾燥しーたけ（鳥居製）</td>
</tr>
<tr>
<td>しーたけ胞子（自製）</td>
</tr>
<tr>
<td>アレルゲン</td>
</tr>
<tr>
<td>しーたけ胞子（自製）</td>
</tr>
<tr>
<td>アレルゲン</td>
</tr>
<tr>
<td>しーたけ胞子（自製）</td>
</tr>
</tbody>
</table>

（50）
ソバガラ、タバコ、真菌類（アルテナリア、アスペルギルス、カンジダ、クラリシポリウム、ベニシリウム）など鳥居薬品製のアレルゲン21種について、予偏テストを施行し、陽性率の高いウスタスト（50%）カンジダ（50%）スギ（8.3%）および、シダケ、シメジ、レタスの6種について、したけ農業者、レタス栽培者に対して、皮内反応を施行した。またCoCa法により抽出した自家製胞子アレルゲンにより、皮内アレルゲンテストを施行した。表11、12、この結果を示し、鳥居薬品製乾燥したしたけ農業者、日時の後、また、胞子アレルゲンも2回製造し、蛋白量を稀釀して、皮内反応を試みたが、その陽性率10.7%であっ、アレルゲン活性の問題、沈降抗体検査法に関しても、なお、多くの問題があるように感じられ、今後の検討を要するところと思われる。

考 察

わが国においては、近年、過敏性肺疾患に関する関心が著しく高まりつつあり、その症例も著しく増加している。過敏性肺疾患は、「問題性肺炎の一例であるので、その原因が外因性アレルゲンによるものである」と定義され、診断治療予防のためには、その外因性アレルゲンを明らかにするが必要がある。一般に、そのアレルゲンは、有機粉塵に属するものとされるが、農家若や、マッシュルーム作業者、砂糖業者、空調病や、夏型過敏性肺炎等で知られているように、真菌類がもっとも多く、このほか、動物の体蛋白による鳥獣病、細菌に属するものとして緑菌肺症などがあげられている。これらの真菌、細菌類をアレルゲンとするものとは、まったく異なるものとして、中沢、小林ら、ついで、Nosterら、また、樋本ら、食用きのこ胞子を原因とするとされた胞子、ナメ科胞子吸入による過敏性肺疾患を発見報告していることは、農村医学の研究を志すものにとって、大変興味があり、注目されるべき報告である。

私達は、農業労働とその環境に関連があり、原因の存在するであろうアレルギー疾患の調査に、したけ栽培者を対象とし、その研究調査の過程において、小林らが発見報告したしたけ胞子、すなわち、したけ胞子吸入による過敏性肺疾患の3例を発見する機会を得た。先述の定義にもあるように、その確定には、肺生検による間質性肉芽腫性肺疾変を病理組織学的に確認する必要がある。この点、私達の3例は、それら入院患者がない点より、検討を施されていない。しかし、さらに詳述したように、特殊な職場環境下の労作後の発症、その症状、検査所見など、いずれも過敏性肺疾変のカテゴリーに一致し、臨床医学的に、過敏性肺疾変の診断は、疑問なく下すことができる。また、この場合、アレルギー歴が、それぞれ認められ、第2、第3例では、IgE抗体reboundされるIgG、IgM抗体の増加があり、血沈値の亢進、好酸球増多など、多くのアレルギー症状と組み、ときに、3例とも、胞子アレルゲンに対する沈降抗体は陽性であった。これに反し、種々の過敏性肺疾変の原因と考えられている次第の11種の沈降抗体（Aspergillus Fumigatus Sera, Trichoderma Viride, Themoactimyces Vulgaris, Sitophilus Granarius, Pullaria Pullans, Pigeon Serum, Pigeon Propings, Micropolyspora Faeni, Cryptostoroma Corticale, Cephalosporium Acemomium, Aspergaullus Fumigatus）はすべて陰性であった。

また、第1例に施行した吸入誘発試験は、牧野らの日本アレルギー学会の吸入誘発テストの診断基準を完全に満足しており、これらの3例は、したけ胞子をアレルゲンとする過敏性肺疾変症例として、誤まりはない。

このうち、第3例の胸部X線写真所見は、図2に示したように両側肺下野のびまん性線維状、微細顆粒状陰影が認められ、その他の所見をあわせ、慢性炎症性状態にあることが認められる。これは、過敏性肺疾変の慢性化より線維性への進行という点から、今後、その予防法を含めて、慎重に経過をみるべき症例と考えられる。

きのこ類に関係あるアレルギー疾患として世界に著名なものは、Mushroom worker's lungである。1959年のBringhurstの報告以後、Sakulaが、それをMushroom worker's lungと命名し、さらに、Jacksonら、Craigら、Yeungら、Stewartら、Lokeyら、Stolyら、Johnsonらなどの報告があり、彼らの多くは、その原因を沈降抗体の陽性などより、栽培用堆肥中に発生する真菌類であると考えている。しかし、胞子そのものを原因とするものないわけではない、先述のNoster、また、Stewartも胞子の沈降抗体陽性であったと報告している。私達は、上述の胞子アレルゲンに対する沈降抗体が陽性で、他の真菌類の沈降抗体陰性より、中沢、小林らと同様、胞子そのものをア
レルゲンと考えるが、いったたけの成育に適した環境は、また、真菌類のよく生育環境になることを考慮すると、上述の状況を全体の面から、これら真菌類をまったく関係ないものと断定するのではなく、やや早計かもしれない。なお、今後、レルゲンの精密分析、レルゲン活性のより精密な測定等の現状の予言も存するものと考える。

また、同一レルゲンによって、もややL型の増殖、他方は、細胞内を惹き、そのメカニズムはなぜか、Mushroom soupでもL型レルゲンの存在することが、一部ムッシュスプーンで、端末もおそらくいること29、最近、増殖の原因にMushroom细胞がある。レルゲン性が大いに予測を凝らしていることが21、さらに小児科領域におけるLycoperdonosis40と、この職業性細胞脳腫との関連など、このこ細胞関連の疾患は、臨床的に、治療的に、レルゲン学的にも解明されるべき問題が多い。

つきに、疫学調査結果について検討する。表1, 9, 10で示したように、同じ農業者群の中でも、いちたけ農家群、呼吸器症状は比較的多く、これを訴えがみかえると、例えば、鹈では40-50%程度みられるが、これに近い数値である。また、この値は、七条、松野らの報告とも近いか、このように多いためは、ハウス栽培そのものの影響に加え、じゅうたれ胞子の刺激とアレルギー症状を示したとみるべきであろう。事実、表10に示したとくに、問題によりアレルギー機序の否定されるものがあり、これを除くと、その有症率は減少した。また、集団調査では、喫煙等のによる慢性気管支炎、慢性副鼻腔炎によるものも明らかにあられ、呼吸器症状の原因には、さまざまなものが複合して存在している。また、じゅうたれ胞子によるアレルギーは、じゅうたれ胞子の呼吸器症状の原因の一部であるとの以前契約であろう。

七条ら39、松野ら34は、胞子より抽出のSK抗原による皮内即時反応陽性率を、それぞれ7～63.6%、13.6～25.5%であったとし、また、じゅうたれ胞子とその対照群間には、その陽性率に関、有意の差をみていない。私共のこのテストの陽性率は、これらの報告よりかなり低いが、同様に対照者間の有意差を認めず、また、その濃度によって、当然であるが陽性率は変動し、一次刺激によるものが否定できない。よって、蛋白量として、0.1 mg/ml, 0.01 mg/ml, 0.001 mg/mlの3濃度による皮内反応も試みたが、同様、陽性率の差は認めていない。このことは、レルゲンの抽出法と、そしてその活性度をいかに測定するかとの問題を有すること、じゅうた胞子レルゲンは、元来さほどどのアレルギー性を有していないことも意味するものと考えられ、この点、じゅうた胞子によるアレルギー疾患の予防には、個人のアレルギー体質を目標とした対策を樹立することが必要であると考える。なお、今後、レルゲン抽出とその活性度、精密な方法に関し、予防法を含めて検討をつづける考える。

謝辞

協同研究者として、種々、御指導を得た徳島大学薬学部藤田啓教授、および、御助言を戴いた同大学医学部三好教授、心よりお礼申しあげる。

また、御協力、御助言を得た徳島大学第3内科関連教授、旭川厚生病院小西行夫副院長、群馬大学小林義雄教授に深謝する。

調査対象となって戴いた徳島市農協一宮、上八万支所のじゅうたけ農家の皆様の御協力を感謝する。

本研究費の一部は、厚生科学研究所研究補助金によって記して謝意を表する。また、本研究の概要は、第32回日本農村学会(広島)、第19回日本胸部疾患学会(美國地方会)、第9回日本農村学会(ニュージージオール、クライストチャーチ)において発表した。

文献

1) 野村茂雄：農業アレルギーに関する調査研究、昭和56年度厚生科学研究補助金研究報告書、57-67、1982。
2) 坂本栄芳：レシス栽培農家の健康障害——とくにアレルギー症状について——農村の健康福祉シリーズ36号、1-6、1981、全共通、東京。
3) 野村茂雄：農業アレルギーに関する調査研究、昭和57年厚生科学研究補助金報告書、51-64、1983。
4) 七条小次郎、近藤秀雄、山田雄、青木三重子、下山理、田村栄：じゅうた胞子の例、1月内誌、58(3)、35-39、1969。
5) 近藤秀雄：じゅうた胞子の例、アレルギー18(1)、81-85、1969。
6) 七条小次郎、小林敏雄、笛木隆三、近藤秀雄、青木三重子、根本俊朗、下山理、田村栄、青木三重子、笛木隆三、小林敏雄：じゅうた胞子アレルギー、日本臨床、28(3)、149-158、1970。
7) 中村次夫、竹谷邦夫、柳村愛雄、笛木隆三、小林敏雄：じゅうた胞子アレルギー研究、感化症会誌、57-67、1982。
8) 鷲野庄平、小林敏雄、宮本正昭、信藤隆夫、中原昭三、可部隆三、中島重徳：気管支喘息および過敏性肺疾患における吸入試験の標準法、アレルギー、3108、1074-1076、1982。
9) 村尾誠、小林敏雄監修、市子英、河合健、中沢次夫編集：過敏性肺疾患、1982、医学書院、東京。
11) 岡本英男、中沢次夫、植松邦生、福住正士、笛木隆三、小林敏雄：納豆アレルギー者にみられた納豆胞子の吸入起因すると考えられる過敏性肺疾患の1例、日胸疾会誌、2009、1026-1031、1982。
12) Brinnghurst LS, Byrne RN and Gershon-Colen J: Respiratory disease of mushroom workers. JAMA 171, 15-18,

(52)
Three Cases of Hypersensitivity Pneumonitis Caused by Inhalation of Spores of "Cortinus Shiitake (Lentinus edodes)" and Results of an Epidemiological Survey on Shiitake-growers


Three patients with hypersensitivity pneumonitis caused by inhalation of spores of Cortinus shiitake (Lentinus edodes) cultivated in vinyl houses were observed. These three patients developed the disease after harvesting shiitake for several hours in closed frame houses with a heater in the autumn and winter. The frames were full of spores of shiitake and the patients suffered from a discordant feeling, systemic weakness, a feeling of cold, fever (over 38°C), a feeling of airway occlusion, a slight cough and sputum. These symptoms disappeared during rest the next day.

Case 1 was examined by the inhalation provocation test with a suspension of shiitake spores and spore-allergen. This test caused several clinical symptoms (fever, airway occlusion and various symptomatic feelings), leucocytosis, decrease of PaO2, a positive reaction of CRP and X-ray findings (appearance of interstitial pneumonitis shadows).

The 3 patients were considered to be suffering from allergic hypersensitivity pneumonitis due to inhalation of spores of Cortinus shiitake, because of their work, the development of symptoms after work in specific occupational conditions, a positive reaction to precipitating antibody against spore-allergen of shiitake, negative reactions to precipitation antibodies to 11 molds-allergens, various abnormal values in immunological tests and a positive reaction in a provocation test in one case.

In a survey of 45 shiitake-grower, it was found that 6 (13.3%) suffered from respiratory disease. No difference was found in the incidence of intracutaneous reactions to spore-allergen or allergen of...
dried shiitake in non-farm workers. Among 31 growers of shiitake a precipitation antibody to spore-allergen was observed only in these three patients. These results indicate that an allergic disposition is very important for development of hypersensitivity pneumonitis.

* Depart. of Int. Med., Oe-Kyodo Hospital, Tokushima-ken Koseiren
* Depart. of Health Management, Tokushima-ken Koseiren
* Faculty of Pharmaceutical Sciences, University of Tokushima