フィルム観察に際して最も慎重でなければならないのは照光である。

即ち視野中の対比がある観察の中心をなすからである。そこで視野中の対比の影響を求めて見ると、視野60°以内の場合は、かなり生理的的性質を100lx位の光源に対しても不快感を与える。故に影響を与えては視野60°外にある用に工夫する事が望まない。それは視点に対し、下、内、の三方向の視野は大体60°の範囲におきかかるからである。故に視野収束30°以内の光線を加減し、60°以上の光源を適する方法を考えて見た。尚影視光のまわりは、影視光の強さに比例し、視線と影視光との間の角度2乗に反比例する。

在来市販されている遮光板を使用したシャーカステンは、視距離と視野との関係を示していない。従って視距離を変え上その効率を低下する。今その関係について検討して見た。例えば当研究所に於て使用しているシャーカステンの中心部を示した場合の周辺部に対する視距離と視角の関係は、第7表の通りである。

<table>
<thead>
<tr>
<th>視 距 離</th>
<th>20cm</th>
<th>30cm</th>
<th>40cm</th>
<th>50cm</th>
</tr>
</thead>
<tbody>
<tr>
<td>視 角</td>
<td>80°40'</td>
<td>59°20'</td>
<td>46°</td>
<td>35°40'</td>
</tr>
</tbody>
</table>

故に第7表より、視距離30cmは注視点をシャーカステンの中心部に置いた場合周辺部に対し調光60°を限る事になる。それ以上の視距離では視野中のシャーカステンの切る面のを減少し緩やかな影響光に左右される様になる。故に観察に際して視距離を短かくして観察する事が望ましい。又周辺の遮光については、注視点をフィルム周辺に移した場合を考慮して、視距離と視角を計算して遮光板の位を決定する必要がある。

又この遮光板を反射光を備えて内側に開閉出来る様に工夫すると側面反射光に対しても策を講ずる事が出来て便利である。尚シャーカステンに観察面積の調節布を付属すれば更に能率が改善される。

B シャーカステンの明るさ

明るい室内に於てX線写真を観察する場合瞳孔面積が狭小しているのでシャーカステン光は又明るいものが必要である。ことに反射光の加わらせを考慮に入れて見ると基盤的な明るさは次の通りである。

先づ照明学的に人間の最低照視照度を100lxとし、それを視野の光束発散度に換算して、最低を75lxとした。従ってこの光束発散度に相当するフィルムの最高黑化を求めるか、自らシャーカステンの明るさが求められる。

今濃度1.3の透明度は1/2aであるから、この部分の透過光が75lxするとするならば、シャーカステンの光束発散度は、1,500lxである事が以上の求められる。更に1.5の濃度に対しては、2,370lxである。この様に透過光より求される事が出来ると、更に反射光が加わる事を考慮に入れて3,000lx位のものが必要であろうと思われる。尚之に調節器を付せば最善である。

む す び

以上の実験、考察に於いては、未だ不充分で、調光法に簡易さを認めると共に、色光、比視感度等についても考察を行なわねばならない。しかし筆者等は先づシャーカステンの観察効果を如何によくするかと云う観点から検討を加えたのであって、その意味に於ても、今回の方法は、ある尺度としてこれを実用的観察法として指摘出来たと考えている。

尚今後も引き続き検討を加えて行いたいと考えている。今後の御批判を賜り度い、終りに臨み、本研究に対し指示をいただいた、当研究所属医師院長高橋亀弥博士に深甚の謝意を表します。

参考文献
照明学会編 照明のデーターブック
出射 架著 医学エックス線学

増感 紙 の 比 較 検 討 に 就 い て
(第6報 増感的方眼と几何学的不銅の関係)

東邦大学医学部放射線医学教室（主任　田坂　昭 助教授）
飯塚 芳郎

(論文受付　昭和30年1月)
ON THE COMPARATIVE STUDY OF THE INTENSIFYING SCREEN.
(The 6th report, The relationship between obscurity (not sharpness) by screen and geometric obscurity)

By YOSHIRO IIZUKA
Dept. of Rad. Jöhô Medical College.

(Article received : Jan, 10, 1955)

Summary

While there are kinetic, geometric, scattered and intensified obscurity, geometric and intensified obscurity in this four factor was persuaded the each other relationship and just then cleared up the selection criteria of appropriate intensifying screen for the subject and position of photograph with establishment of undifferentiated range of the sharpness.

内容梗概

第6報として、X線写真を不鮮ならしむる運動的不鮮、幾何学的不鮮、散乱的不鮮、感象的不鮮の四つの因子のうち、幾何学的不鮮と感象的不鮮の関係を追究し、此の関係を明らかにすると共に、鮮銳度の弁別不能域を確定し、撮影目的、撮影部位に対する適切なる増感紙の選択基準を明らかにした。

緒言

増感紙の性能を左右する因子の一つである鮮銳度の
評価法に就いて今迄に種々検討し、報告して来た。然
し之等の評価法は何れも被写体が、フィルム面に密着
している状態に於ける評価であり、之を基とした鮮銳度
の比較検討であった。ところが実際に吾々が、X線
写真を撮影するには、目的の部位が取枠面に密着し
ているのではなくて必ず一定の距離が存在している。従
って鮮銳度の評価も又此の様な状態で検討を加える
事が必要であると考えられる。即ち、被写体フィル
ム間距離の変化に対して、不鮮はどの様に変ってくる
であろうか、更に異った鮮銳度を有する増感紙との関
係はどう変化するであろうか、等を知る事が撮影目的
に応じて適切な増感紙を選択する上に必要な事であろう。

此の様な考えの基に、四つの異った鮮銳度を有する
増感紙を対象に此の問題を検討したので、ここに報告
する。

増感紙の不鮮に関する考察

X線写真を不鮮ならしむる因子は、増感紙に依る不鮮S、半影に依る不鮮H、動きに依る不鮮B、フィル
ムに依る不鮮E、散乱に依る不鮮等が挙げられるが、
今回このうち運動と散乱の因子を一応除外して主として残りの不鮮に対して検討を行った。この際の不鮮

\[U = S + H + E \](1)

及び相互の不鮮の和と考えられる。和として考えて
良いか否かは、以前から二つの意見があり、決定
されて居ない様であるが、
今回は一応合として考
えを進めて行き、不鮮合
点があるか否かも検討
を通じて事にした。一
方第1図の如く、焦点の
大きさをF、焦点-フィ
ルム間距離をa、被写体
-フィルム間距離をbと
すると半影は

\[H = F \cdot \frac{b}{a-b} \](2)

の式で表わされるので、増感紙を用いた時の不鮮は

\[U_s = S + F \cdot r + E \](3)

で表わされ、増感紙無しの場合の不鮮は

\[U_{ns} = F \cdot r + E \](4)

で表わされる。

従ってX軸に被写体-フィルム間距離bをとり、Y
軸に不鮮Uをとれば第2図の如く、半影Hだけに依る
不鮮の値は原点を通り、b=aに於て∞となる曲線で

NII-Electronic Library Service
表 1 分別不能となる b の値

<table>
<thead>
<tr>
<th>増感紙</th>
<th>r</th>
<th>a=70</th>
<th>a=100</th>
<th>a=150</th>
<th>a=200</th>
</tr>
</thead>
<tbody>
<tr>
<td>FT & FS</td>
<td>0.100</td>
<td>Σ</td>
<td>7</td>
<td>9</td>
<td>14</td>
</tr>
<tr>
<td>FS & MS</td>
<td>0.205</td>
<td>Σ</td>
<td>12</td>
<td>17</td>
<td>26</td>
</tr>
<tr>
<td>FT & MS</td>
<td>0.283</td>
<td>Σ</td>
<td>14</td>
<td>21</td>
<td>32</td>
</tr>
<tr>
<td>MS & HS</td>
<td>0.270</td>
<td>Σ</td>
<td>15</td>
<td>22</td>
<td>33</td>
</tr>
</tbody>
</table>

示される。これにフィルム及び増感紙の不銳が加わると、その不銳は

\[U_s = \frac{b}{a-b} \cdot F+E+S \] \((5) \)

で表される曲線となる。

又 a, b に対する U の変化を簡単にするために、b 軸に焦点-被写体距離と被写体-フィルム間距離の比、即ち \(\frac{b}{a-b} = r \) をとり、y 軸に同じく U をとれば第 3 図の如く之等の関係は直線で表される。尚図の c 曲線は、a, b の変化に依る r の値を知るために、x 軸に同じく \(r = \frac{b}{a-b} \) をとり、y 軸に b をとった曲線

実験

I : 実験に使用せる装置並びに材料
i) X 線発生装置 日立DR-1%S
ii) X 線管 SDR-1% (焦点5×5mm側)
iii) 島津製試験用光光度計
iv) 増感紙 極光(HS MS FS FT(試作品))
v) 直角裁断面 (厚 2mm の Cu)
vi) アルミ階段 (0.5mm×20)
vii) 木製台 (直角裁断面を1～30cm迄自由に固定出来るもの)

II : 被写体密着時における不銳の評価

以上の考察から先ず被写体密着時に於ける夫々の増感紙の不銳を知るために、第 2 報で報告した客観的錶銳度の評価法に基づいて夫々の不銳を測定した。

第 4 図に示す如く、取枠面上に直角裁断面を有する金属片を乗せ、更に其の上に任意の箇所に所定の密度を得るためアルミ階段を乗せて一定の条件の下に夫々の錶銳度に依って露出のみを変化させて撮影し、第 5
図の如く X 線が金屬片に吸収され未感光部分と、アルミの厚さに応じて生じた濃度段階の中より、濃度差が 1.0 の点を選びて此の面の濃淡幕界面を測定光度計を用いて 1/100mm 毎に濃度を測定し、之をグラフにする

写真 6 図 被写体含蓄時の鮮鋭度

と第 6 図の如き曲線が、得られるので、此の曲線の直線部分を延長しその値が 0 及び 1.0 とに上と下の点の間の距離を測定し、不鋭の定義とした。即ち此の様にして求めた値はフィルムに依る不鋭 E と、夫々の増感紙に依る不錶 S との和で表わされることになる。

II：鮮鋭度の異う 4 種の増感紙の不鋭

この様にして被写体密着時に於ける夫々の増感紙に対する不鋭の値が計測出来るが此の方法による値を不鋭の絶対値として良いか否か疑問があるが、夫々の増感紙の不鋭の差は此の方法に依って得た値の差が大体当りまると考えることにする。被写体がフィルムから離れると不鋭は此の値と半影との和になるとの先程の考えから、x 軸に $r = \frac{b}{a - b}$ をとり、y 軸に不鋭 U 及び a が 200、150、100、70cm の時に対する b の値をとると第 7 図の如くなる。

Ⅲ：鮮鋭度の弁別不鋭域

以上の様にして各増感紙毎に、r の変化に対する不鋭の値の関係が図示されたが、b がある程度大きくなって、H に対する増感紙の不鋭の比が小さくなってくると、大きな H の値のために、わずかな増感紙の不鋭の差が果して不鋭としてどう論じ得るであろうか、を確かめるために更に次の様な実験を行った。

写真 8 図
弁別は不能であろうと考えられる。同様の考え方にて他の HS, FS, FT を中心として弁別不能域を定めると、

弁別不能域を検討

以上の如く夫々の増感紙に対して弁別不能域が一応作られたが、果して之等の値が正確であるか否かを知るため次の様な実験を行った。

先ず UF に中心とした弁別不能域が UFS の線上と交える点の r の値を求め、更に此の r に於ける b の値を求めると、a=100cm では b=9cm となるので、此の位置で被写体として選んだ手指を先頭の木製台を用いて完全に固定し FT と FS を用いて撮影する。

又念のため b=6cm, 及び b=0cm より同様の撮影

（57）
増感紙の比較検討に就いて（飯塚）

増感紙に就いての研究を試みたが、所定の厚さが不足すると、X線写真の感度が低下し、画像の細部が不鮮明となる。そこで、この問題に対する解決策として、増感紙の利用が提案された。増感紙の使用により、感度は大幅に向上し、画像の鮮明度も改善された。

考 察

以上の結果により、増感紙は増感度の向上に寄与することが証明された。増感紙の利用は、画像の鮮明度を向上させ、診断の精度を高めるのに有用である。

結 論

以上のように、増感紙の利用は、診断の精度向上に寄与するものである。今後、増感紙の改良を図り、更なる診断の精度向上を期待したいと考える。