60Co 遠隔治療時の容積線量算出式について

金沢大学医学部附属病院中央放射線部（部長 平松 博教授）

松 平 正 道

（論文受付 昭和43年7月15日）

STUDY ON THE CALCULATING EQUATION OF VOLUME DOSE IN TELECOBALT THERAPY

By MASAMICHI MATSUDAIRA

Division of central Radiological Service,
Kanazawa University Hospital

(Article Received; July. 15, 1968)

For finding the equation to calculate volume dose in telecobalt therapy, the experiment and the theoretical consideration were carried out, and the following result was obtained. The volume dose (VD) can be calculated as the following equations.

If \(X \leq 10 \text{cm} \)

\[
VD = F_0 D_b \left[28.3 - (28.3 + 0.694 X) e^{-0.0634 X} \right] \text{ [gR]}
\]

If \(X \geq 10 \text{cm} \)

\[
VD = F_0 D_b \left[27.27 - (27.50 + 0.58 X) e^{-0.0634 X} \right] \text{ [gR]}
\]

\(F_0 \): Irradiated field (cm²)

\(D_b \): Irradiated dose

\(X \): Thickness of irradiated body (cm)

Above equations are available provided that source-skin distance is from 35 to 110cm.

The volume dose factor calculated by the above equations is placed on the table 1 so that volume dose could be calculated extremely simple.

The volume dose is proportionate to irradiated field and irradiated dose of center of irradiated field in telecobalt therapy.

I. 緒 言

放射線治療を行なうにあたり容積線量をできるだけ軽減することは治療効果を上げる一つの因子であると考えられる。容積線量は放射線を照射することにより身体の全容積に吸収された線量で表わされるが、これを求める代表的な方法として Mayneord による方法と等量曲線より求める図形的計算法がある。しかし Mayneord による計算方法は誤差が大きく等量曲線より求める方法は非常に煩雑である。

これらの欠点を除くため 60Co 遠隔照射時の容積線量を求める算出式を導き出し、容積線量係数（仮称）なるものを作成した。これによって容易に容積線量を求めることが可能である。

II. 容積線量算出式のための理論的考察

ある照射野をもって人体に照射した場合、線錐内の等量曲線が照射面に平行な平面でないということ及び線錐外の散乱線を無視すれば深部等曲線を積分し照射野面積を乗ずることにより容積線量を求め得るはずである。
Mayneordの算出式はこの前提のもとで導き出されていると思われる。しかしこの方法によれば照射野の広い場合は近似的に成立つと思われるが、照射野が狭くなるにつれて線錶内の線量に比較し線錶外の散乱線の割合が広照射野の場合に比べ大となり、その誤差は無視できないと考えられる。

いま、被照射体内に細い線束を想定した場合、その容積線量は線錶内のγ線及び線錶外の散乱線によるもの合計であり、広い照射野のものは細い線束によるものの合計されたものと考えてよいはずである。しかし、この線束の線錶内の線量の測定は可能であるが、被照射体内に散乱された全ての散乱線を測定することは非常に困難である。この測定を可能にする方法として以下のよう考え方をした。

すなわち、散乱線が飽和したと考えられるような有限大の照射野で、その各深さの付加散乱線量を測定すれば narrow beam によるそれぞれの深さの1平面上における散乱線の総線量を知ることとなる。Fig. 1 はその状態を2次元的に示したものであるが、narrow beam による深さ d に含む1平面 A d の受ける散乱線量は各点の受ける線量を D 0, D 0, D 0, … とすると Z D 0 となる。一方、散乱線が飽和状態にある場合において、たとえば P 点より d だけ離れた直線 O L を考え、この部分より出発する散乱線の中、P 点に集まるものを D "0 とする。同様に d だけ離れた L 2 よりの散乱線量を D "0 とするとき、D D "0, D "0, D D "0 であると考えてよい。他の場合についても同様である。ここに P 点に受ける散乱線量は Z D "0 = Z D 0 となり、飽和状態における付加散乱線量を測定することにより、narrow beam よりのある深さの1平面上に受ける散乱線量を知ることが可能である。

このことは厳密には照射野及び被照射体が無限に広く、線束が平行である場合に成立つことであるが、実際には被照射体及び照射野が有限の大きさにおいても散乱線は飽和状態となり、照射距離が極端に短いかない限り成立つと考えられる。ゆえに容積線量は散乱線が飽和したと思われる状態における深部率曲線を積分し、それに照射野面積を乗ずることにより求めればよいことになる。

III. 実験材料及び方法

深部率曲線を積分するためには曲線を数式で表す必要がある。深部率 (P) は被照射体表面における空中線量を基準とすると、2次平面面の成り立っている部分において(1)式のごとく表わすことができる。ゆえに散乱係数 (S x) は(2)式で示される。

\[
P = \left(\frac{f}{f+x} \right)^x e^{-0.0342x} \times S x \times 100(%) \] ……………(1)

\[
S x = \left(\frac{f}{f+x} \right)^x e^{-0.0342x} \times S x \times 100 \] ……………(2)

ただし、f は線源被照射体間距離、x は深部の深さを示す。飽和状態における散乱係数を知るため線源被照射体間距離 35cm 及び 90cm、深部の深さ 2～35cm において様々な照射野における 90Co γ 線の深部率を測定し(1)式にしたがい散乱係数 (S x) を求めた。照射野の形状は正方形とし、幾何学的照射野とした。ファントームに
水を使用し東芝製 MI-102-A 型深部線量計及びコロニアル線量計（小型チェンバー）により測定を行なった。照射装置は RI-107-2 型 Co 治療装置 (1200Ci) を用いた。

被照射体は実際には有限であり、特に放射線の照射深度に加わらないはずであり、容積線量の計算値は一定値より多いためである。この後方散乱の影響を知るため Fig. 2 のごとく線量計を水ファントームに配置し、後方のファントームの厚さを 0〜10cm に変化させ線量値を観察した。

\[f(x) = x^2 \]

Fig. 5 は後方散乱の状態を示したものである。横軸は後方のファントームの厚さと、縦軸は散乱線の増加率をとり、後方ファントームの存在しない場合を 1 として、照射野をパラメータにより表わした。照射野が大であるものについても後方に約 5cm のファントームが存在することにより後方散乱は飽和する。後方散乱は照射野が充分大きな場合、約 4.5% と言える。しかも 5cm 以上前方には、その影響を及ぼさないことを示している。

容積線量の算出式は以下のようになる。

\[D_e = D_0 \left(\frac{f}{x} \right)^2 e^{-0.0634x} \cdot S_a \] \[\text{[R]} \]

\[A D_e = F_a D_0 \left(\frac{f}{x} \right)^2 e^{-0.0634x} \cdot S_a \] \[\text{[cm}^2\text{R]} \]

表面における照射野を \(F_a \) とするとき\(S_a \) 倍の場合

\[F_a = F_0 \left(\frac{f}{x} \right)^2 \]

であるから

\[A D_e = F_0 D_0 e^{-0.0634x} \cdot S_a \] \[\text{[cm}^2\text{R]} \]

なお、被照射体内での距離による線量の減弱という概念は必要でなくなる。ゆえに被照射体の厚さ \(X \) cm の容積線量 \(VD \) は次のごとくとなる。

\[VD = \int_0^X F_0 D_0 e^{-0.0634x} \cdot S_x dx \] \[\text{[cm}^3\text{R} = \text{gR]} \]

なお \(S_x \) は⑸及び⑷式に示したとおりであるから容積線量は以下のようにになる。

被照射体の厚さが 10cm 以下の場合

\[VD = \int_0^X F_0 D_0 e^{-0.0634x} \cdot (0.044x + 1.10) dx \]

\[= F_0 D_0 [28.3 - (28.3 + 0.694X)e^{-0.0634X}] \text{[gR]} \]

被照射体の厚さが 10cm 以上の場合

\[VD = \int_0^X F_0 D_0 e^{-0.0634x} \cdot (0.044x + 1.10) dx \]

\[+ \int_0^X F_0 D_0 e^{-0.0634x} \cdot (0.037 + 1.16) dx \]

\[= F_0 D_0 [27.27 - (27.50 + 0.58X)e^{-0.0634X}] \text{[gR]} \]

計算例として照射野 100cm, 被照射体の厚さ 30cm, 照射線量（被照射体表面における空中線量）300R について容積線量を求めると次のようになる。

---(210)---
Fig. 3. 60Co γ 線の水ファントーム内の散乱係数

Fig. 4. 散乱線の臨和状態における散乱係数と深さの関係

Fig. 5. Chamber 後方の水ファントームの厚さと後方散乱係数の関係

V. 考察

容積線量を求める方法として前述したように Mayn-cord による計算法及び等量曲線より求める方式がある。
Table 1. 容積線量係数

<table>
<thead>
<tr>
<th>厚さ (cm)</th>
<th>容積線量係数 (g/㎝³)</th>
<th>厚さ (cm)</th>
<th>容積線量係数 (g/㎝³)</th>
<th>厚さ (cm)</th>
<th>容積線量係数 (g/㎝³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>15</td>
<td>13.3</td>
<td>15</td>
<td>13.3</td>
<td>19.9</td>
</tr>
<tr>
<td>3</td>
<td>18</td>
<td>13.9</td>
<td>18</td>
<td>13.9</td>
<td>29</td>
</tr>
<tr>
<td>4</td>
<td>17</td>
<td>14.6</td>
<td>17</td>
<td>14.6</td>
<td>30.6</td>
</tr>
<tr>
<td>5</td>
<td>12</td>
<td>15.2</td>
<td>12</td>
<td>15.2</td>
<td>31.9</td>
</tr>
<tr>
<td>6</td>
<td>19</td>
<td>15.7</td>
<td>19</td>
<td>15.7</td>
<td>21.2</td>
</tr>
<tr>
<td>7</td>
<td>20</td>
<td>16.3</td>
<td>20</td>
<td>16.3</td>
<td>15.5</td>
</tr>
<tr>
<td>8</td>
<td>21</td>
<td>16.8</td>
<td>21</td>
<td>16.8</td>
<td>34.1</td>
</tr>
<tr>
<td>9</td>
<td>22</td>
<td>17.3</td>
<td>22</td>
<td>17.3</td>
<td>35.1</td>
</tr>
<tr>
<td>10</td>
<td>23</td>
<td>17.8</td>
<td>23</td>
<td>17.8</td>
<td>36.0</td>
</tr>
<tr>
<td>11</td>
<td>24</td>
<td>18.2</td>
<td>24</td>
<td>18.2</td>
<td>37.0</td>
</tr>
<tr>
<td>12</td>
<td>25</td>
<td>18.7</td>
<td>25</td>
<td>18.7</td>
<td>38.0</td>
</tr>
<tr>
<td>13</td>
<td>26</td>
<td>19.1</td>
<td>26</td>
<td>19.1</td>
<td>39.0</td>
</tr>
<tr>
<td>14</td>
<td>27</td>
<td>19.5</td>
<td>27</td>
<td>19.5</td>
<td>40.0</td>
</tr>
</tbody>
</table>

Mayneord による計算式は次のようになければならない。

\[VD = 1.44 D_p F_0 \left(1 + \frac{2.88 x^{1/2}}{r} \right) \]

\[- \left(1 + \frac{2x}{r} + \frac{2.88 x^{1/2}}{r} \right) \frac{x^{1/2}}{1.16.5} \]

ただし \(VD \) は被照野の厚さ \(z \) に対する容積線量、
\(D_p \) は面積線量、
\(F_0 \) は照射野 \(x+1/2 \) の深部率 50% の深さ、
\(F \) は被照野、任意の距離を表わしている。

この式が完全に成り立つためには深部率曲線を指数関数でなければならいない。しかし距離による減弱と散乱付加によりこれは望めないであろう。また、この方法によれば直接線外の散乱線を考慮に入れていないため、このことによる誤差も含まれる。table 2 に Brit. J. Radiol. Suppl. No. 10 のデータを基にして Mayneord の計算式より求めた容積線量係数と本文の計算により容積線量を示した。

Mayneord の計算式よりも求めたものは当然ながら照射野の狭いものは相対的に低い値を示している。Table 2. 照射野距離 50cm 照射線量 100R

<table>
<thead>
<tr>
<th>照射野</th>
<th>照射線量 100R</th>
</tr>
</thead>
<tbody>
<tr>
<td>20cm²</td>
<td>29296gR</td>
</tr>
<tr>
<td>100cm²</td>
<td>141582gR</td>
</tr>
<tr>
<td>400cm²</td>
<td>625558gR</td>
</tr>
</tbody>
</table>

等量曲線より図形的に求められる方法は理論的には正確であるが等量曲線の区切り方及び何%までの等量曲線をとるかにより正確度に相違を生ずる。一般には低い線量区間は省略される。しかしこの方法の最大的欠点は容積線量を求めることができる非常に煩雑である。

著者の方法による容積線量の計算値に対する誤差は次のようものが含まれると考えられる。

（1）面積及び体積による容積線量の計算は被照野の厚さを、その厚さを同様に等深の深さとして計算されるため、背後からの散乱線を含むこととなり、実際よりも多い値となる。これはこの方法においても言えることである。

（2）被照野は側方にも限界であるため、計算値は体外に散乱するものを余分に含むこととなる。

（3）被照野前面から 2 度電子平衡の成り立たない部分を無視している。

（4）放射線束は平行でなく電極状に広がるため、線錐の周囲ほど線束の被照野を通過する距離が長くなる。このため吸収される線量は計算値より多くなると考えられる。

（5）同様に理由で照射野に入射する線量は周囲ほど少なくなるため、容積線量は計算値より少ない値となるはずである。

まず①についてはFig. 5 に示したとおり後方散乱は照射野が大である場合、約 4.5% である。しかもそれは 5cm 以上前方に影響を与えない。後方散乱が深部率に与える影響は、ある深さを基準に考え、その深さより後方の散乱体よりの散乱線がその深さの深部率に与える影響が 4.5% の深さより前方へいくにしたがい、その深さより背後に存在する散乱体よりの散乱線の影響は少なくなり 5cm 前方では無視してよいと考えられる。これを数値的に表わすと Fig. 5 よりえたを述べ、後方前方 1cm の場合、後方に 1cm の散乱体が存在することによる背後に散乱係数が 1.019 であるから、これよりさらに背後に多分散乱体が存在するときのそれをそれによる背景散乱係数は 1.014 となる。他の場合も同様であり、これを Table 3 に示す。おおく前方散乱を差引いて補正すると、たとえば 20cm 厚の被照野の場合、容積線量係数 \(V'' \) は次のようになる。

<table>
<thead>
<tr>
<th>背後散乱係数が深部率に与える影響</th>
<th>0cm</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>前方への距離</td>
<td>1.045</td>
<td>1.026</td>
<td>1.015</td>
<td>1.007</td>
<td>1.002</td>
<td>1.000</td>
</tr>
</tbody>
</table>

Table 3. 背後散乱係数が深部率に与える影響
表 4. 後方散乱に対する補正係数

<table>
<thead>
<tr>
<th>被照射体の厚さ</th>
<th>補正係数</th>
</tr>
</thead>
<tbody>
<tr>
<td>5cm</td>
<td>0.982</td>
</tr>
<tr>
<td>10cm</td>
<td>0.992</td>
</tr>
<tr>
<td>15cm</td>
<td>0.995</td>
</tr>
<tr>
<td>20cm</td>
<td>0.997</td>
</tr>
<tr>
<td>25cm</td>
<td>0.998</td>
</tr>
<tr>
<td>30cm</td>
<td>1</td>
</tr>
</tbody>
</table>

この場合は側方散乱は少なく、一般には線細両側に被照射体
が存在するから無視してもよいと考えた。

表面部の2次電荷平衡の成立しない部分については
実際に吸収される線量は計算値より少ない値となる。しか
し60Coのγ線の場合、2次電荷平衡に達する深さは約
5mmと言われているため、容積線量を考えるとき、こ
れを無視してもそれ以上の誤差は極めて少ないと考えら
れる。

(1)及び(2)については照射距離が短い照射野の大きさであ
ると、その影響は大であると考えられる。これら
については幾何学的に補正係数を考慮することが可能。ま
ず照射野の周辺部では被照射体中央のγ線束が通過する
距離が長くなることについては、中心部の通過距
離に対して、平均的に通過距離がどれほど増加するかを
比率(A)で、表わすと次のようなになる。照射野を円と考
え半径を、線源被照射体距離をf、被照射体の厚さを
Xとすると

\[A = \frac{\int_{0}^{r} \frac{X \sqrt{f^2 + r^2}}{f} 2\pi r dr}{X\pi r^2} \]

\[= \frac{2}{3} \left(r^2 + f^2 \right)^{3/2} - f^3 \]

すなわち容積線量はほぼAだけ増加すると考えてよい。
なぜなら、わずかな被照射体の厚さの変化の範囲内であ
れば容積線量係数の増加率は一定であり、このような範
囲内では容積線量は厚さに比例すると考えてよいからで
ある。

次の照射野の周辺部ほど入射線量が減少することにつ
いては照射野の中心部と同様の線量が照射野全体に入射
したと考えた場合の積分値と線源からの円錐状となって
入射した場合の積分値との比(B)は次のように表わされる。

\[B = \frac{\int_{0}^{r} \frac{2\pi r}{\pi r^2} dr}{\frac{f^2}{f}} \]

\[= \frac{2}{3} \left(r^2 + f^2 \right)^{3/2} - f^3 \]

すなわち容積線量はBだけ減少することになる。
これからの両補正係数は互いに消去し得るような関係にある。

表 5 左のような条件での両補正係数 A、B について
計算を行なうと右欄のようなになる。

<table>
<thead>
<tr>
<th>線源被照射体間距離</th>
<th>照射野半径</th>
</tr>
</thead>
<tbody>
<tr>
<td>40cm</td>
<td>15cm</td>
</tr>
<tr>
<td>50cm</td>
<td>15cm</td>
</tr>
<tr>
<td>50cm</td>
<td>10cm</td>
</tr>
</tbody>
</table>

\[A = 1.015 \]

\[B = 0.970 \]

\[A - B = 0.984 \]

\[A = 1.010 \]

\[B = 0.980 \]

\[A - B = 0.990 \]

60Co 遠隔治療の場合、半影をさけることはできないが、
容積線量計算値に対する半影は照射野の大きさを半影の
50% 値までの広さことにより無視できると考えら
れる。なぜなら 50% 以下の線量分布が部分 paralysis の
100〜50% の部分をほぼ補えると考えてよいかである。

VI. 結 論

60Co 遠隔治療時の容積線量を求めるための算出式を
導き出し以下のような結論を得た。
Co 遠隔治療時の容積線量算出式について（松平）

1. 容積線量は次の算出式により計算できる。
被照射体の厚さが 10cm 以下の場合,
\[VD = F_D D (28.3 - (28.3 + 0.694X) e^{-0.0634X}) \text{[gR]} \]
被照射体の厚さが 10cm 以上の場合,
\[VD = F_D D (27.27 - (27.50 + 0.58X) e^{-0.0634X}) \text{[gR]} \]
これらの式は線源被照射体間距離が 35～110cm の範囲内で成り立つ。
2. 上記の算出式より容積線量係数を求め Table 1 に示した。これにより極く簡単に容積線量を求め得る。
3. 実際の Co 遠隔治療においては容積線量は照射野及び照射野中心の入射線量に比例すると言える。
4. 容積線量を軽減するには \(r \) 線束の被照射体中の通過する距離をできるだけ短縮するような照射術式を選ぶべきである。

参考文献
2) 松平正道：日放技学会誌, 21, 4, 1966.
3) "Depth data" Brit. J. Radiol., Suppl No. 10
4) 河島俊三：日本放技学会, 19, 1392, 1959.

文光堂

X 線 撮 影 法

撮影目的に最適の X 線写真を！

国立がんセンター 市川平三郎・虎の門病院 中島哲二共編

本書はX線撮影の基本的な知識を図入で示したものである。臨床的にまず必要十分と思われる部位について、撮影に当たって重大な各々の体位、入射線の角度、解剖学的また生理学的注意、造影法のコツ、撮影条件および実際のX線写真等々を患者や機械に応じて活用できるよう詳細に記載したX線撮影法の決定版である。実際に機械のかたちにおいてすぐ利用できるよう総論、各論ともレイアウトに工夫を凝らした一方、体位写真、解剖図、X線写真とも最上上の条件にて作成した。

A4 变型判・550頁・850図・価 9,000円・〒150

東京都文京区本郷7-2-7／郵便番号 113／振替口座東京 578／TEL東京85313-5411代

文光堂