4. Medical Radiation Management — The Present State and Technical Problems

Noriyoshi Umezaki, Masahide Kawamura*, Teruo Miyagawa**, and Seiji Kawamura**

Kurume University School of Medicine, Radioisotope Institute for Basic and Clinical Medicine
*Kurume University Hospital, Radiation Theraphy Center
**Kurume University Hospital, Department of Central Radiology

Summary

A questionnaire was sent out for the purpose of trying to grasp the existing state of radiation measurement among the medical and dental school hospitals. It was pointed out that the accuracy of measurement regarding the X-ray examination is not better than therapeutics part concerning both standard and survey measurements. The reason for this is supposed due to the unsatisfactory dependence on the low energy using in the measuring instruments. The effect of energy on measurements and the dose equivalent at a 1 cm depth were discussed.

2) The back scatter radiation to the film badge is slightly effected by the X-ray energy. It is constant when the distance between the phantom and film badge is under 3 cm and reduced over 3 cm. By adopting ICRP Pub. 26 in the near future, the dose equivalent at a 1 cm depth should be measured inorder to provide radiation protection. It is considered that the calibration will be made using a phantom. If the calibration is made at 3 cm distance between the phantom and film badge, the dose equivalent at 1 cm depth will be underestimated when the film badge is put at a distance of over 3 cm from the body.

3) The availability of silicon photodiode as a sensor was considered by the method in which an X-ray is directly exposed to one. The energy spectrum can be detected over the 15-200 keV range. It has been concluded that the usage of this sensor can calculate the dose equivalent at a 1 cm depth for lower energy radiation as using clinical examination.
はじめに

放射線管理のための測定の目的は、放射線の人体への影響の尺度である線量値を求めることがあると言われてきた。ICRP Pub. 26で放射線被曝による確定的影響の発生を制限すること等を目的とした実効線量値および組織線量値の概念が提案され、わが国の法律にも取り入れられようとしており、今後の放射線管理のための測定の目的はこれらの線量値を求めることになると考えられる。またICRP Pub. 26で盛り込んだ「放射線診療における被曝の管理」が出版されるようであるので、

なお、実効線量値および組織線量値を直接測定することはできないので、換算可能である物理量（電離量、フールエンス、励起量、フィルム黒化度など）をまず測定される。しかし、これらの物理量と実効線量値または組織線量値は、必ずしも単純な関係で結ばれていない。また、測定結果に統一的な保証を持つためには測定器が、第一に基準の量または測定器とのトレーサビリティを持つことであり、第二にエネルギー、密度、方向、温度、湿度、電磁場などの依存性が、また直線性を持つことであると言われている。

これらの背景のもとで、医療における放射線管理のための測定の現状と技術的問題を検討するためにアンケート調査により問題点を抽出することとも、現在の測定器による実効線量値および組織線量値測定のための問題点について検討した。なおこの報告ではβ線、中性子および内部被曝線量の測定については触れていない。

1. アンケート調査結果

測定器の問題点および品質保証を知る目的で、全国の医科、歯科系大学が所持している放射線管理測定器の現状調査を行った。回収率は約40%（63/125）であった。Table 1に調査結果の主なものを総めた。測定器の品質保証は撮影部門、高エネルギー治療部門、RI治療部門、RI検査部門とそれぞれの部門が日常業務により特徴があるが、全体には標準線量計およびサーベイメータとともに撮影部門の測定器の品質保証が悪く、高エネルギー部門が良い傾向にあった。

標準測定器をみると、線量計のO点ドリフトおよび指示値のふらつきは高エネルギー治療部門で使用しているものが少なく、線量計の校正も高エネルギー治療部門、RI治療部門がよく行われている。また温度、気圧および窓あつ補正も高エネルギー治療部門がよく行われている傾向にある。

| Table 1 線量計の精度に関するアンケートの集計結果 |
|------------|-----------------|-----------------|-----------------|
| | 撮影部門 | 高エネルギー治療部門 | RI治療部門 | RI検査部門 |
| 1. O点ドリフト不感 | 17/33(52) | 29/46(68) | 12/22(55) | 4/7(57) |
| 2.指示値のふらつきなし | 24/33(72) | 38/46(83) | 16/22(72) | 6/7(85) |
| 3.校正を行っている | 24/33(73) | 43/45(95) | 21/21(100) | 5/7(71) |
| 4.温度下の補正をされている | 26/34(76) | 45/47(95) | 19/22(86) | 3/6(50) |
| 5.窓補正をしている | 20/32(63) | 30/32(94) | 12/19(63) | 3/6(50) |

（上段：標準測定器 下段：サーベイメータ）

サーベイメータをみると線量計の校正はRI治療部門、高エネルギー治療部門、RI検査部門がよく行われている傾向にある。また標準測定器とサーベイメータの品評を比べるといずれの部門でもサーベイメータの方が悪いように見受けられた。これはサーベイメータという名前が探査的な機能と考えられる傾向にあることから、精度を重視する傾向にある校正が重要視されていないために考えられる。なお同じ機種でありながらある施設では非常によい測定器としての評価を受けており、またある施設では異なる多の測定器としての評価を受けているものも見受けられた。このことは使用施設の測定器に対する考え方、または管理測定の考え方で起因するものかも知れない。従来の放射線測定器は、主にフィルムバッジが使用されており、測定値の信頼性については満足であるとの回答が79%であった。不満足であるとの回答の理由は、放射線の検出限界、即時性についての指摘が多かった。環境測定器は電離線計測器が主流であり、信頼性については満足であるとの回答が85%であった。不満足であるとの回答の理由は、低エネルギーについての測定限界および放射線のエネルギーが不明であるなどエネルギーに関する指摘が多々見受けられた、放射線測定器として定評がある電離線計測器にしてもエネルギー依存性は、高エネルギー領域では良いが、低エネルギー領域では問題があるといわれている。このことは特に低エネ
ルギーX線を利用する撮影部門および散乱線の多い場所での測定で問題を生じる。撮影部門での線量計の品質保証の悪さ、エネルギー依存性が低エネルギー放射線で悪いことにも起因していると考えられる。なお現在使用されている管理用測定器は、一般に原子力施設または高エネルギー放射線測定用として開発されており、医療用の低エネルギー放射線測定器の開発はまだ遅れているようである。

2. 放射線のエネルギーとICRP Pub.26による線量評価の検討

1)放射線の性質と測定値
放射性核種による汚染時GMサーベイによる測定
放射性核種による汚染の直接測定は、サーベイメータの検出限界を考慮するとめに放射能の換算係数を事前に測定しておくことが必要である。なお換算係数の算出に汚染の形式のない状態を考慮して検討する必要がある。例えば、汚染核種が乾燥している場合や、液滴状態の場合との測定値には、汚染による影響が大きい。このような測定器放射線が入射して測定器との相互作用をする以前の放射線に関する環境データに関する知識の整理も必要である。

Table 2 汚染の状態による主な核種のGMサーベイメータによる検出効率

<table>
<thead>
<tr>
<th>核種</th>
<th>乾燥液体</th>
</tr>
</thead>
<tbody>
<tr>
<td>99mTc</td>
<td>2.17±0.32</td>
</tr>
<tr>
<td>111In</td>
<td>3.21±0.52</td>
</tr>
<tr>
<td>201Tl</td>
<td>2.18±0.25</td>
</tr>
<tr>
<td>68Ga</td>
<td>1.58±0.13</td>
</tr>
<tr>
<td>111I</td>
<td>2.00±0.22</td>
</tr>
</tbody>
</table>

(汚染対策推奨資料より)

2)フィルムバッジに対する後方散乱線の影響
装着された個人被曝線量計は、人体からの散乱線の寄与のため、Free Air中の散乱状態と比べて感度が増大するといわれている。フィルムバッジは、後方散乱線により黑化度が増加し、たまたフィルムバッジに入射する放射線の平均エネルギーは低い方に移動する。このことについに診断用X線のフィルムバッジに対する影響を検討した（Fig.1）。放射線のフィルムバッジへの後方散乱線の影響は、放射線のエネルギーにより差異があった。装着距離の影響は約3cm以内では大きく変化しないが、3cmをこえると急激に減少する。なお散乱線によるエネルギーの移動は、僅か1keV程度であった。現在のフィルムバッジの校正は、ファントムがない状態で行われているため散乱線の寄与だけ被曝量は、過大評価されていることになる。ICRP Pub.26の採り入れに際してファントムを使用して校正することが考えられるが、校正時にファントムとフィルムバッジ間距離が、例えば3cmで決定されれば、3cmを越えた距離で着用すれば、過評価されることになる。フィルムバッジ装着時に手帳や筆記用具などをいれて装着距離を離して着用すると被曝量が不正確になると同時に過評価になるので注意しなければならない。久松大学において、フィルムバッジの装着距離について調査したところ装着距離が3cm以内の被曝者（男70％、女85％）であった。装着距離は、装着部位とともに今後考慮しなければならない問題であろう。また、鉛プロテクタをファントムとフィルムバッジの間に挿入したときの線量（Fig.1）はファントムのない状態とほとんど変わらず、後方散乱線の影響はほとんど見られなかった。また手帳（5mm厚）をファントムとフィルムバッジの間に挿入したときの線量（Fig.1）は、手帳がないときのファントムからの後方散乱線の影響と同様であった。しかし、この散乱線の影響がファントムからのものか手帳からのものかは確かめている。ICRP Pub.26の採り入れでは不均等被曝についても考慮している。患者を介した場合および血管造影時の散乱線による被曝を想定し、アクリアルファントムからの散乱線を測定すると Fig.2に示すように、ファントム側方で照射野の照射線量に対し0.07％の散乱線を認め、上方になるにしたがい減少した。不均等被曝
放射線が1cm深部線量当量に到るまでの理論的関係を示したものである。従前、電離線サーベイメータは、照射線量を対象とし照射線量測定について特性が良好なことを目指してきた。実効線量当量の導入により1cm深部線量当量が測定の対象となり、今後のサーベイメータは、1cm深部線量当量についてエネルギー特性が良好なことを目指すことになるが、エネルギーが高くなければ、現在の照射線量を1cm深部線量当量としても良いが、低エネルギーおよび低エネルギー成分が多いと過小評価されることになる。低エネルギー領域の放射線で1cm深部線量当量が必要なときは適当な定数を考慮すべきであると言われている。すなわち、光子エネルギーの評価が放射線による影響の評価を左右する。

b. 照射線量と1cm 深部線量当量

撮影用放射線の1cm深部線量当量を計算より求めめた。X一線スペクトルは、Hospital physicists associationのデータを使用した（Fig.4）。高エネルギー（1250 keV）のコンクリート透過放射線のスペクトルデータはモントカルロ法によって求めた（Fig.5）。これらの値に空気の質量エネルギー吸収係数および1.602×10^{-19}×hν（eV）を乗じて空気の吸収線量（rad, 10 mGy）を算出し、また空気の質量エネルギー吸収係数および1.843×10^{-19}×hν（eV）を乗じて照射線量（R）を算出した。照射線量と空気吸収線量の比は0.869である。なお電離線サーベイメータのエネルギー依存性は、Aloka ICS-151のβ線除去キャップを使用した場合のデータを使用した。

Fig.6は、Xおよびγ線の空気の吸収線量から深部および表層線量当量を換算するためのものである。変換係数は光子エネルギーにより幅に変化し、約60 keVにピークを持つ曲線である。例えば、60 keVでの空気吸
収線量（Gy）から1cm深部線量当量（Sv）の換算係数は1.74で，照射線量（R）から1cm深部線量当量（10 mSv単位）への換算係数は1.51である。このように，診断領域に使用される放射線のエネルギーに対して，換算係数は大であるため特に考慮しなければならない。Fig.6の換算表を用いて空気収線量から各種の線量当量を計算した結果をTable 3に示す。なお便宜上，電離箱での線量単位をR，吸取線量の単位を10 mGyおよび実効線量当量の単位を10 mSvとしてあらわし，空気の吸取線量で正規化して示している。このため電離箱の値が1.15であれば電離箱の線質依存性がないことを示している。β線除去キャップを使用して測定した電離箱の場合，低エネルギー光子に対する線質依存性のため，100 kV以下のX線では指示値をそのまま照射線量とすると過小評価される。1 cm深部線量当量は60 kV以下のX線では電離箱の指示値をそのまま使用すると過大評価することになるが，60 kVを越えれば過小評価することになる。1 cm深部線量当量と空気吸取線量を使用した場合は60 kV以上のX線で過小評価することになる。1 cm深部線量当量を求めるためには照射線量または空気吸取線量のいずれにしろ約60 kV X線以上ではなんらかの補正が必要になる。

Table 3 種々のX線撮影電圧および1.25 MeV光子のコンクリート通過後の各種線量単位の関連

<table>
<thead>
<tr>
<th>電離箱 (R)</th>
<th>吸取線量/Air (×10 mGy)</th>
<th>0.07 mm</th>
<th>3 mm</th>
<th>10 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>50 kV</td>
<td>1.06(29)</td>
<td>1.05(29)</td>
<td>0.95(31)</td>
<td></td>
</tr>
<tr>
<td>60 kV</td>
<td>1.08(32)</td>
<td>1.07(32)</td>
<td>0.97(34)</td>
<td></td>
</tr>
<tr>
<td>80 kV</td>
<td>1.11(37)</td>
<td>1.28(38)</td>
<td>1.21(40)</td>
<td></td>
</tr>
<tr>
<td>100 kV</td>
<td>1.13(43)</td>
<td>1.33(44)</td>
<td>1.31(46)</td>
<td></td>
</tr>
<tr>
<td>120 kV</td>
<td>1.15(49)</td>
<td>1.37(50)</td>
<td>1.38(52)</td>
<td></td>
</tr>
<tr>
<td>140 kV</td>
<td>1.15(55)</td>
<td>1.40(55)</td>
<td>1.43(58)</td>
<td></td>
</tr>
<tr>
<td>1.25 MeV</td>
<td>1.15</td>
<td>1.16</td>
<td>1.16</td>
<td></td>
</tr>
<tr>
<td>0 cm</td>
<td>1.13(1080)</td>
<td>1.17(1074)</td>
<td>1.16(1073)</td>
<td>1.15(1072)</td>
</tr>
<tr>
<td>50 cm</td>
<td>1.14(858)</td>
<td>1.19(847)</td>
<td>1.19(845)</td>
<td>1.18(842)</td>
</tr>
</tbody>
</table>

Rは吸取線量の1.15倍（）内は平均エネルギーワーが1.25 MeVはコンクリート通過後の線量
例えば140 kV X線の吸収線量から1 cm深部線量に換算するためには1.43，同様に電離箱の指示値からの換算では1.24倍することが必要である。1.25 MeVの放射線をコンクリートで遮蔽した場合には，電離箱の指示値に対する係数は1.04である。このように低エネルギー放射線を1 cm深部線量当量に換算するとき1 cm深部線量当量変換係数は無視できない。なお，皮膚および水晶体への影響の算定にはそれぞれ70 μm表層線量当量および3 mm表層線量当量が組織線量当量として用いられる。Table 3に示すように70 μm表層線量当量および3 mm表層線量当量を求めるには電離箱の指示値に任意の係数を掛ける必要がある。診断用放射線は低エネルギーが使用されているため被曝線量算定にはエネルギー測定が重要な課題になるものと考えられる。

C. シリコンダイオードを用いた線量計

診断用放射線のエネルギー測定には，NaI(Tl)検出器，Si半導体検出器およびGe半導体検出器が使用される。

Fig. 7 Detection Efficiency of Photo Diode Detector

Fig. 8 Spectra of I-125 and Tc-99m Measured with Photo Diode Detector

Fig. 9 Spectra of 70 kV X-ray Measured with Photo Diode Detector

この測定スペクトルを基に放射線線量を研究した論文が報告されている。今回は，診断用放射線の測定器として，シリコンダイオード（受光面10×10 mm）に直接放射線を照射し，その放射線特性を検討した。Fig. 7にこのセンサーの放射線出力係数を示す。このセンサーは15〜200 keV位までの光子エネルギーを測定できると考えている。Fig. 8に，このセンサーで観察したTc-99mおよびI-125のスペクトルを示す。フォトピークがあるが，分解能はAm-241で約11%である。Fig. 9はポータブル撮影器から発生したX線のスペクトルをGe(Li)と比較したものである。約20 keVまではGe(Li)と同様な特性であるが，それよりも高いエネルギーになると検出効率低下のため検出できる光子数は減少している。Fig. 7の検出効率で補正を行うと各エネルギーに対するF値を計算できる。このF値からエネルギー曲線における放射線吸収線量を算出できる。吸収線量1 cm深部線量当量および3 mm深部線量当量に換算することが可能である。なお，同様な方法で70 μm−表層線量当量および3 mm−表層線量当量への換算も可能である。

まとめる

医療では，放射線が診断（X線），治療（β線，γ線，X線，時には中性子線）および核医学検査（γ線，X線，β線）などに利用されており，それぞれに放射線の質およびエネルギーは異なっている。このように医療では多種多様な放射線が使用されており，放射線管理のための測定はこれからのすべてが対象になる。しかし，この報告ではこれらの測定のX線領域の一部を検討している。実効線量当量の導入に伴い，なるべくその近似値が得られるような評価方法（測定器の開発も含めて）が必要である。測定値から実効線量当量に換算する過程で放射線の種類，エネルギー，入射方向，照射部位など種々の因子が関係する。このことは，特に診断部門
4. 医療における放射線管理のための測定の現状と技術的問題（梅崎・他）

および散乱線が多き場所の測定には問題を生じる。また
現在の照射線線量計と同様に正確な1 cm深部線量当量計
が開発された場合にはサーベイ（探査的に感じる）とい
う名称を他に名称に変更することで放射線管理測定器と
しての正確さを付加することも必要であろう。

特に診断領域のX線被曝を評価するためには、低エネ
ルギーで1 cm深部線量当量の換算係数が大きいため放
射線のエネルギー測定を無視して通過することができな
いと考えられる。放射線を常に取扱うことを職業とし
ているからこそ放射線の作用に対して真剣に取り組み、
責任が取れるような評価法を確立しなければならない。

おわりに
診療用放射線の測定技術の問題点について低エネルギ
ーの光子の測定について主に述べた。シンポジウムの開
催時に実効線量当量が法令に採り入れられる状況になり、
実効線量当量の討論を避けて通ることができないと感じ
て検討に加え、最後にアンケート協力して頂いた多く
の施設、およびいいろいろな資料を提供して頂いた方々、
およびいろいろなアドバイスを頂いた方々に感謝すると
ともに、フィルムバッジを提供して頂いた千代田保安用
品株式会社に感謝します。なおフィルムオートメーション用い
た線量計に関する報告は文部省科学研究費による研究の
一部である。

文 献
1) ICRP Publication 26 国際放射線防護委員会勧告、
(1977)。
ICRP Publ. 26 を受けて「放射性同位元素等によ
る放射線障害の防止に関する法律」が昭和63年5月
18日告示され、昭和64年4月1日から施行される。
医療法施行規則など他の関係法令も次第改正される
予定である。
2) 放射線診療における被曝の管理：日本医学放射線学
会、日本アイソトープ協会。
3) 梅崎典良、荒木精治、川上克幸、他：委員会報告、
医療用非密封放射性同位元素使用施設における汎
策資料（2）一と放射線眼の予防・除染及び染の評価な
らびに汚染対策マニュアル、日放射学会、44(4),
4) 外部被曝モニタリング日本アイソトープ協会
(1986)。
5) ICRU Report 39, Determination of dose equiva-
lents resulting from external radiation sources
(1985) International commission on radiation
units and measurements。
6) 放射線安全管理講習会テキスト（第44回～第50回）
1987，放射線障害防止中央協議会，8原子力安全技
術センター。
7) Catalogue of Spectral Data for Diagnostic X-
Hospital Physicists’ Association: Scientific
Report Series-30, (1979)。
8) 坂本弘己，長 哲二：診断用X線のスペクトル測定
（II）九大医短大紀要，11, 11–16, (1988)。
9) 長 哲二，坂本弘己：診断用X線付加フィルタの被
曝線量への影響，九大医短大紀要，8, 51–55,
(1981)。
Scatter Data for Diagnostic Radiology. Phys.
11) ICRP Publication 21 国際放射線防護委員会勧告、
体外線源からの電離放射線に対する防護のためのデ
ータ：ICRP Publication 15 の補遺日本アイソトー-
プ協会，内科研究財団，(1971)。