249. 最近のCT装置の動向（2）
-被曝線量と低コントラスト分解能との関連-

Latest Trend of X-Ray CT Scanner（2）
-Correlation between Radiation Dose and Resolution-

埼玉コンピューターディスカウニング（C.I）研究会

独協医科大学越谷病院 村松 桂久
(Yoshihisa Muramatsu)

【目的】同一出力（mA s）条件でも、その被曝線量が装置間で異なることは、以前から知られている。

ところが、最近の装置ではハード機種が増えて多く、異なるものが多く、その傾向は増大していると思われると。そこで第二報では、最近の被曝線量の現状を調査するうえに、低コントラスト分解能との関連について検討したので報告する。

【使用装置・機器】
CT装置：日立製、同様
フィルム：CT性能評価委員会（第二次勤務）フィルム（幅16mm）
線量測定装置用フィルム
PP-87（16mm幅×20cm）トモグラフィフィルム
線量計：102X

【方法】13機種のCT装置について
1. 頭部ルーチン条件を中心にmA sのみ数段階に変化させ、トモグラフィフィルムにて測定を行ない、相互厚補正後の値を被曝線量とした。検査学的条件はフィルム中心を回転中心に設定し、測定位置はフィルムの中心とした。
2. 1と同一条件下で、低コントラスト分解能を測定した。

【結果・考察】

頭部ルーチン条件の被曝線量結果をFig-1に示す。分類は同一レートと同様である。両方ともmA sは約400mA sと同程度で、線量は通常方式で約70mGy・mA s方式では約50mGyとなり増加傾向を示した。次に100mA s当りの線量は、最大で約24mGy・最小で約5mGyとなり、約5倍の値が現れた。この原因は検査学的条件・発生方式等と考えられる。また線量より近似的に分割される出力線量比を行うと、それぞれ約50mGy・約5mGyとなり、装置性能の精度を象徴した結果となった。

次に、この被曝線量は装置間における図表的対応は考えられないが、この関連性は患者のリスクを考え上で重要であり、以下の検討を行った。

Fig-2 線量変化に対する低コントラスト分解能（0.5%）の結果では、両方の平均である。両方とも線量の増加に伴い評価値は良くなり約7mGyに収束した。また、同一線量比では70mGy以下の分としてよい評価を示すのがそれ以上では逆転し、この結果はFig-1のXとFig-3の両方で認められた。ただし、ほとんどのmA s方式では臨床上50mGy以上の線量Xは不可能である。

【まとめ】

頭部ルーチン条件において、最近のCT装置の被曝線量は増加傾向にあり、それに伴い低コントラスト分解能は向上している。しかしその同一線量比較では現状の低コントラスト分解能の評価法の範囲では向上は認められず、更に低被曝で高画質な装置開発が望まれる。

Fig-3 同一線量における低コントラスト分解能（0.5%）