目的 数年間に、肺のびまん性疾患の評価に高分解能CTの役割が不可欠になっている。CT画像に反映される形態的変化は、0.5〜1.0mm以上のサマルクレベルのものといわれている。

実験装置 CT装置；横河Quantex GX（空間分解能Edge関数0.4mm, Bone関数0.5mm）
実験条件：東アミラシス（胸郭）を切断した円筒のもの（直径＝長さ）＝0.6〜0.3mm, ρ＝1.1, 2.6〜0.13
CT値65〜70（Fig.1,0.3mm）

結果 1. 粒状模型（Fig.2, 32個/cm²）
直径0.5mm以上、粒状影として見える。（Table 1A）
2. 血管模型（Fig.3）
直径0.3〜0.4mmが示現限界。（Table 1B）

考察・結論 1. 粒状模型の示現限界は、0.5mm（16個/cm²）であった。
0.4mm±、境界領域で、0.3mmでは、粒状影には見えずCT値の上昇にとどまると考えられる。0.3mmでは、CT値が200上昇するためには、
計算上1100個/cm²の結節が必要である。
2. 0.5〜0.6mmの粒状影は、不鮮明、不規則分布し、融合化傾向を示す。これは、胸部X-PのSummation現象に類似する。（Fig.4）
3. 血管模型の示現限界は、0.3〜0.4mmで、伊藤秀海先生が言われている0.5〜1.0mmよりかなり小さかった。長さの違いも影響するか。
4. 粒状影の示現限界は、Partial volume現象によるCT値の減少と空間分解能およびノイズであるが、それらの相互の関係を解明する
には至らなかった。引き続き検討する。
5. これらの結果は、模型実験によるものであり、臨床写真と対比して検討を深めることが必要である。

※呼吸 Vol.6(2) p153〜159, 1987（びまん性肺疾患のCT診断）

Table 1 粒状、血管模型の示現限界

<table>
<thead>
<tr>
<th>大きさ (mm)</th>
<th>粒状模型</th>
<th>血管模型</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>16</td>
<td>32</td>
</tr>
</tbody>
</table>

Table 2 粒状、血管模型の示現限界

<table>
<thead>
<tr>
<th>大きさ (mm)</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.3</td>
<td>- (7.8)</td>
</tr>
<tr>
<td>0.4</td>
<td>- (6.5)</td>
</tr>
<tr>
<td>0.5</td>
<td>+ (9.3)</td>
</tr>
<tr>
<td>0.6</td>
<td>+ (9.3)</td>
</tr>
</tbody>
</table>

Fig. 1

Fig. 2

Fig. 3

Fig. 4

--- (1302) ---