A Study on the Measurement of Effective Energy of Leakage X-rays

NOBUHISA FUJimoto · NOBORU OOGAMA · MOTOHIRO NISHITANI and KATSUHIKO YAMADA

Kyoto College of Medical Technology

Received Jul.8,1996; Revision accepted Jan.8,1997; Code No.822

Summary

It is important to correct for the energy response of the X-ray detector in measuring X-ray leakage from the protective barrier of the examination room. However, measurement of effective energy of leakage X-rays is very difficult in the clinical setting. In this paper, we discuss a method for estimating the effective energy of both primary and scattered X-rays. This method is based on the measurement of leakage X-ray spectra using a semiconductor-fitted X-ray detector and analyzing the relationship between X-ray tube voltage and effective energy. In this study, we found that the effective energy of leakage X-rays was not dependent on the thickness of shielding materials like concrete and lead. With the concrete barrier, it was possible to express the relationship between X-ray tube voltage and the effective energy of leakage X-rays with a simple approximate equation. With the lead-lined barrier, the absorption of the K-edge of lead needs to be considered in estimating the effective energy of leakage X-rays at relatively high tube voltages.

Key words: X-ray dosimetry, X-ray spectrum, Effective energy, Leakage X-ray
2. 方 法
2-1 漏洩X線のスペクトル測定
2-1-1 一次X線の漏洩X線スペクトルの測定
Fig.1にスペクトル測定のジオメトリを示す。
X線発生装置には定電圧形X線発生装置（SHD150G；島津製作所）を使用し、X線管（CIRCEREX1/2P38D：島
津製作所）の管数は2.1mmAlとした。また、測定中の管電流、管電圧を監視するために、管電圧・管電流
計（AB2015D：トーリック）を使用した。
X線照射室内に、6.0mm厚の鉛板を設けて材とした仮設壁（1.8×1.8m）を設置し、ここに25×25cm²の
窓を開けて30×30cm²の供試壁材1を固定できる構造と
した。焦点から供試壁材外側までの距離は3mとし、照射野は焦点から1.5mの距離において25×30cm²
とした。検出器にはGe半導体検出器（高純度型Ge半導
体検出器Model GLO510：CAMBERA）を使用し検出
窓が供試壁材外側面に接する状態で測定を行った。ま
た、検出器側方のシールドには6.0mm厚の鉛を用い
た。なお、検出器のGe結晶の有効直径
は25.5mm、厚さは10mmのブレーダー
型である。
供試壁材はコンクリート（普通コンクリート：実測密度2.17g/cm³）と鉛とし、コンクリート壁の厚さは15～
25cm、鉛の厚さは1.0～3.0mmのものを使
用した。管電圧の測定範囲はコンクリート壁については60～120kV、鉛については50～120kVとし、いずれの
場合も実用的なレースを考慮して、管電圧が低い領域では薄い材料を使
用し、高い領域では厚い材料を使用するようにした。管電流は0.1～4.0mA
の範囲を使用し、このときの管電圧の
実測値は0.5%以下であった。
2-1-2 抜乱X線の漏洩X線スペクトル
測定
Fig.2にスペクトル測定のジオメトリ
を示す。
X線発生装置および検出器等の実験
装置は一次X線の場合と同様のものを
使用し、抜乱体として20×20×20cm³の
水ファントムを使用した。焦点から抜
乱体表面までの距離を1.0m、抜乱体中
心から供試壁材外側面までの距離は
1.0mとし、抜乱X線の漏洩X線スペク
トルを測定した。供試壁材としては、10cm厚のコンクリートと1mm厚
の鉛を使用した。管電圧は75～120kV
とし、管電流の範囲は0.1～4.0mAとし
た。
2-2 実効エネルギーの計算
実効エネルギーの計算に用いた方法
は、われわれが抜乱X線の実効エネ
ルギー計測に使用した方法で、本学会雑
誌第51卷第6号掲載の論文2において、その正当性および計算精度の高さ
について報告したものである。
この方法は、まず半導体検出器の測
定データをStripping法3により補正し
光子数スペクトルを求める。次に、空
気の質量エネルギー吸収係数4を使用

第53巻 第3号
して照射線量スペクトルに変換する。さらに、AIの減衰係数を用いて、照射線量スペクトルの減衰計算を行い減衰曲線を求める。そして、この減衰曲線の半価厚から実効エネルギーを計算するものである。

3. 結果
3-1 スペクトル形状の変化
3-1-1 画壁厚の変化によるスペクトル形状の変化
Fig.3に管電圧75kVにおいて、コンクリート画壁の厚さを10〜25cmまで変化させた場合の、一次X線の漏洩X線光子数スペクトルの変化を示す。壁厚の増加に伴って、低エネルギーX線成分の吸収増加によりスペクトル分布幅は多少減少するが、顕著な形状変化はみられなかった。

Fig.4に管電圧75kVにおいて、鉛厚を1.5〜3.0mmまで変化させた場合の、光子数スペクトルの変化を示す。ここでも、コンクリート画壁と同様の傾向がみられ、顕著なスペクトル形状の変化は示されなかった。
3-1-2 管電圧の変化によるスペクトル形状の変化
Fig.5に厚さ25cmのコンクリート画壁に対し、管電圧を75〜120kVまで変化させた場合の、一次X線の漏洩X線光子数スペクトルの変化を示す。ここでは、スペクトル分布の最大値が管電圧と一致し、管電圧の増加に伴いスペクトルの分布幅が増加することが判った。また、管電圧120kVのスペクトル分布に特性X線のピークが観測されるが、これは検出器側のシールドに使用した鉛からのものと思われる。なお、スペクトル分布のなかで、X線管のターゲット材料であるタンスチンの特性X線のピークが顕著に観測できないものがないが、これはスペクトル分布のピークと重なったり、エネルギーの変化に対する光子数の変化が急激な部分と重なって、判別が難しくなっていると考えられる。

Fig.6に厚さ3.0mmの鉛画壁に対し、管電圧を75〜120kVまで変化させた場合の、一次X線の漏洩X線光子数スペクトルの変化を示す。画壁に鉛を使用した場合において、管電圧75kVと80kVではスペクトル分布の最大値が管電圧と一致しているが、100kVおよび120kVでは鉛のK吸収端の影響で管電圧は一致せず、最大値はK吸収端のエネルギー（88keV）に一致する。この結果、管電圧が75〜120kVまで変化しても、スペクトルの分布幅に大きな変化がみられなかった。

Fig.7に厚さ10cmのコンクリート画壁に対し、管電圧を75〜120kVまで変化させた場合の、90°散乱X線の漏洩X線光子数スペクトルの変化を示す。散乱X線の場合、エネルギーが増加すると散乱によるエネルギーの減少分も増加する。したがって、管電圧の増加に伴うスペクトル分布の高エネルギー側への変位および分
布幅の増加は、一次X線の場合に比べて小さい。また、散乱によるX線エネルギーの低下により、管電圧120kVのスペクトルにおいても、一次X線（Fig.5）の場合に観測されたような鉛の特性X線によるピークは観測されなかった。

Fig.8に厚さ1.0mmの鉛画壁に対し、管電圧を75～120kVまで変化させた場合の、90度散乱X線の漏洩X線光子数スペクトルの変化を示す。一次X線の場合と同様に、鉛のK吸収端の影響により、管電圧が変化してもスペクトルの分布幅の大きな変化はみられなかった。

3-2 管電圧と実効エネルギーの関係

3-2-1 一次X線の漏洩X線の場合

Fig.9にコンクリート画壁を使用した場合の管電圧と実効エネルギーの関係を示す。実効エネルギーは画壁の厚さと殆ど依存せず、管電圧の増加に伴って単純増加の傾向を示した。

Fig.10に鉛を使用した場合の管電圧と実効エネルギーの関係を示す。この場合もコンクリート画壁と同様に、実効エネルギーは厚さと殆ど依存しない。管電圧との関係において、鉛のK吸収端の影響がない領域では管電圧の増加に伴い実効エネルギーも増加するが、K吸収端の影響が現れる管電圧90kV以上の領域では、実効エネルギーは一定となった。

3-2-2 90°散乱X線の漏洩X線の場合

Fig.11に管電圧と実効エネルギーの関係を示す。散乱によるX線エネルギーの低下によって、一次X線の場合に比べて全体的に実効エネルギーが低くなっている。また、鉛を使用した場合にK吸収端の影響によって実効エネルギーが一定になる現象も、管電圧100kV程度では現れなかった。

4. 考察

漏洩X線のスペクトルおよび実効エネルギーを評価する方法として、QI（Quality Index）：線質指標、ECF（Effective Energy Conversion Factor）を導入するとともに、管電圧と実効エネルギーの関係を示す実験式について検討した。

4-1 QIによる評価

Fig.12に一次X線の漏洩X線について、管電圧とQIの関係を示す。QIはX線の最大エネルギーに対する実効エネルギーの比であるから、QIが1.0に近くなるほどスペクトルの分布幅が狭くなり単色X線に近づく。コンクリート画壁についてみると、管電圧の増加に伴ってQIが減少していくことが判る。これは管電圧の増加とともにスペクトルの分布幅が増加していることを示し、スペクトル形状の変化から得られた結果とよく一致していると考えられる。また、鉛を使用した場合には、コンクリートに比べて管電圧変化に対するQIの変化が小さい。

そこで、鉛を使用した画壁ではK吸収端の影響を受けない88kV以下の管電圧の領域では、どの鉛厚に対
吸収端の影響を受ける管電圧の領域では、実効エネルギーよりは6〜7%以下、また鉛厚2.0mm以上では±2%以下であった。

また、鉛を使用した画壁においてK吸収端の影響を受ける管電圧の領域では、実効エネルギーよりは6〜7%以下、また鉛厚2.0mm以上では±2%以下であった。

4.2 ECFによる評価

X線スペクトルの最大エネルギーや管電圧と同じ数値になる場合には、QIを使用して管電圧から実効エネルギーより求めることができが、散乱X線のように最大エネルギーや管電圧の数値が異なる場合には、QIによる実効エネルギーの計算は実用的ではない。

そこで、管電圧に対する実効エネルギーの比をECFと定義する。

Fig.13に散乱X線の漏洩X線について、管電圧とECFの関係を示す。コンクリート画壁の場合には、一次X線の場合と同様に管電圧の増加に伴うECFの変化は単純減少の傾向を示す。しかし、鉛を使用した場合には、K吸収端による影響の出現が、管電圧のみではなく、画壁透過前のスペクトル形状に依存すると考えられる。したがって、今回の実験結果だけでは、管電圧とECFの関係を明確にすることは難しいと考える。

4.3 実験式の検討

コンクリート画壁の場合において、管電圧と実効エネルギーの関係が比較的単純であることが判る。そこで、両者の関係を実験式にしておけば、実用上有用であると考えた。

一次X線の漏洩X線について、実効エネルギーは画壁の厚さには依存しないとして、線形回帰を行った結果、以下の近似式が得られた。

\[
E_{\text{eff}} = 0.451V + 26.2 \quad (60 \leq V \leq 120)
\]

ここで、\(E_{\text{eff}}\)は漏洩X線の実効エネルギー(kV)、Vは管電圧(kV)である。また、このときの相関係数は0.982で、最大誤差は±4%であった。

90°散乱X線については、画壁厚10cmに対して一次X線と同様の回帰計算を行った結果、\n
\[
E_{\text{eff}} = 0.331V + 28.5 \quad (75 \leq V \leq 120)
\]

となり、この場合の相関係数は0.997で、最大誤差は±1%であった。

5. 結論

実効エネルギーは連続的なエネルギースペクトルをもつX線のエネルギーを単一の値で表現するため、スペクトル形状や使用目的によっては、大きな誤差を招く場合があるので、その適用に注意が必要である。

本研究において、漏洩X線のスペクトル形状は画壁
内部における低エネルギー成分の吸収により、分布幅の狭いものとなることが判った。また、管電圧に対する実効エネルギーの変化が比較的少なく両者の関係も単純化されることが確認できた。

したがって、漏洩X線の場合、線量当量換算係数の算出など、検出器のエネルギー依存性を補正する目的で実効エネルギーを使用しても、大きな誤差は発生しないと考えられるとともに、今回検討した近似計算法は有意義であると考える。

今回の実験のように供試壁材に検出器を近接させて測定した場合、X線の斜入射が起こり検出器のレスポンスを補正する際に誤差が生じる。漏洩X線の場合、検出器への斜入射の状態を正確に評価することは難しいが、誤差の程度を把握しておくことは必要である。この点については今後の課題としたい。
参考文献