学術調査研究班報告
ラジオセージリの現状と技術的ガイドライン

平成10年度学术委員会 ラジオセージリの現状と問題点の調査検討班

班長 後藤純一 長崎大学医学部附属病院
班員 国枝悦夫 慶應義塾大学医学部放射線科学教室
 横木昭則 佐賀医科大学附属病院
 白倉政雄 東京女子医科大学附属病院
 大野吉美 広島大学医学部附属病院
 宮沢正則 ユーロメディテック株式会社

班発足の趣旨
頭蓋内の小病変に対して、医薬技術の重大性を考慮し、病巣内線量を集中させその他の部位の線量を極力抑える方法が、ステレオタクティックラジオセージリ(SRS)である。現在、この方法による治療に63,000点という高額な健保側が適用される。多くの施設で実施されている、しかしながら、その方法は施設によりまちまちであり、投与線量や照射精度など施設ごとに異なる傾向がある。これらのことを踏まえて現状の把握と検討検討を実施した。
また定位放射線治療の前提として、照射中心点に対して2mm以内の照射精度を満たすことという項目がある。しかしながらその精度に対しては、議論された測定方法は現在のところ示されておらず、各施設の基準にまちまちである現状がある。これも照射精度を含めたラジオセージリを行うための技術的ガイドラインの提案を目的とした。

はじめに
頭蓋内小病変に対して病巣辺縁線量が10～50Gy以上に達する照射を、1回で行う場合これを定位放射線手術(stereotactic radiosurgery: SRS)といい、1回線量を8Gy以下とした場合を定位放射線治療(stereotactic radiotherapy: SRT)、分割照射の場合は、(fractionated stereotactic radiotherapy: FSRT)という、これらを併せて定位放射線照射(stereotactic irradiation: STI)を開示している。これにはコバルト60のガンマ線を用いるガンマユニットと、医薬直線加速器(ナイック)のX線を用いる方法がある。どちらも精巧な装置と三次元の治療計画装置を用いて線量分布の最適化が図られている。照射精度を保つために多くの場合、頭蓋骨の固定が行われる。

1. SRSの現状
ナイックによるSRS、長崎大学医学部附属病院等の高度先進医療の実施を踏まえて、1998年4月より健康保険法による保健診療所定位放射線治療の名称で認めた。健康的な放射線治療にSRSを意味しており、ガンマナイフによる治療と同額の63,000点と定決された。
ナイック施設では、STIを行うことが業務面からも有利と考えられるようになった。しかしながら、STIを精度よく行うためには正しい線量測定と、精度管理されたナイックを用いることが必要であり、既存の設備ではかなり厳しき技術となることが予想されている。このような現状を調査し、問題点を把握するためにアンケートによる実態調査を行った。
アンケートの実施調査は1998年12月末から1999年2月15日までの期間で行った。

2. 検討項目
これ報告項目を以下に示した。
(1) SRSシステムの概要
(2) 周辺機器と照射方法
(3) ナイック・ビームの線量測定
(4) 射野学的精度のQA
(5) 関与する人員
(6) 照射基準点と投与線量
これらについて応40項目のアンケート調査を、国立、私立、市立等の大学附属病院、がんセンター、技
術学会にて発表履歴のある病院等について行った。また、ガンマエミニュートの施設については関連のある項目のみのアンケート調査を行った。

3. アンケートによる実態調査および集計データの解析

3-1 ライナックによるSRSシステムの概要

3-1-1 アンケート回答施設

アンケート送付施設の合計は120施設で、回答があったのは76施設であり回答率は63%であった。以下76施設について内訳をFig. 1に示す。国立大学病院が最も多く33施設（42%）、順に私立大学病院17施設（22%）、公立病院9施設（12%）、公立大学病院6施設（8%）、国立病院2施設（3%）、赤十字病院2施設（3%）、私立病院2施設（3%）、その他5施設（7%）である。

3-1-2 SRS実施施設

76施設中SRSを行っている施設は40施設、将来的にも行う予定の施設が28施設、行う予定がない施設が9施設であった。現在SRSを行っている施設が50%で将来的にも行う施設は合計すると80%近くの施設がSRSを行うことになる（Fig. 2a)。1998年12月までの症例総数（Fig. 2b）は1件以上の症例を行っていた。「予定症例数より実際行った症例が多い」と回答のあった施設はなく、「予定通り」が22施設（58%）、「予定より少ない」が16施設（42%）であった（Fig. 2c）。予定より少ない理由として、「患者が集まらない」が10施設（63%）、「医師不足」が1施設（19%）、「医師不足」1施設（6%）、「機械不良」1施設（6%）であった（Fig. 2d）。患者が集まらないことが半数以上を占めている。以降はSRSを行っている38施設についての解析結果を示す。

3-1-3 治療装置の内訳

治療装置（ライナック）別ではVarian社製が15施設（40%）、株式会社東芝製が10施設（26%）、三菱電機株式会社製が7施設（18%）、NEC社製が3施設（8%）、フィリップスメディカルシステムズ株式会社製が1施設（3%）、その他が2施設（5%）であった。他の2施設は、アイソセンタを持たない医用加速器。サイバーナイフ施設であった。内訳をFig. 3に示す。

3-1-4 使用エネルギーや

STIの使用エネルギーの内訳をFig. 4に示す。2種のエネルギーを使用している施設もあったが、10MVが最も多く20施設（48%）、ついで6MVが13施設（31%）、4MVが8施設（19%）、8MVが1施設（2%）であった。

3-1-5 ナロー・ビーム用コリメータ

ナロー・ビーム用コリメータ所有数は最大で15個であり、最小で2個という施設もあった（Fig. 5）。12個所有している施設が最も多く、これは、あるメーカーの標準セット数が12個であることに起因していた。

3-1-6 定位固定について

SRSでは侵襲が29施設、非侵襲が2施設、両方使用が2施設であった。SRTでは侵襲が2施設、非侵襲が26施設、両方使用が1施設であった。分割照射が行われることが多いSRTでは、非侵襲固定の施設がほとんどであった。

3-2 周辺機器と照射方法

3-2-1 標的座標の照合器具

標的座標の照合を行う器具やコンピュータソフトを有する施設は29施設で、SRSを行っている施設に対する割合は76.3%となり、全体の4分の3の施設においては標的座標の照合が可能であると回答された。そのような器具やコンピュータソフトは有さない施設、と未回答は併せて9施設（23.7%）であった（Fig. 6）。

3-2-2 ライナックのガントリ、カウンタの回転精度

ライナックのガントリ、カウンタの回転精度のQCT（quality control）を行っている施設は26施設で68.4%、行っていない施設および未回答は10施設（31.6%）であった（Fig. 7）。

3-2-3 計画画像の取得装置（複数回答可）

治療計画に用いる画像取得装置はCT（computed tomography）、MRI（magnetic resonance imaging）、angioであり、メーカ別ではCTは東芝、GEが多くそれぞれ14施設（35%）、MRIではGEが多く15施設（54%）、angioでは東芝13施設（40%）、シームレス7施設（22%）と多かった。内訳をFig. 8に示す。
ラジオサージェリの現状と技術的ガイドライン（後藤・他）

3-2-4 画像転送方法

計画画像の転送のネットワーク化については画像取得装置から治療計画装置への転送はオンラインが32施設（84.2%）、オフラインが7施設（18.4%）であり、治療計画装置から治療装置（ライナック）へはオンラインが9施設（23.7%）、オフラインが30施設（78.9%）であった。

2000年7月
ナロー・ビーム用コリメータの数。

Fig. 5

放射線技術学会雑誌

3-2-5 治療計画に使用する画像(複数回答可)
治療計画に使用する画像ではCTが34施設(89.5%)、MRIが20施設(52.6%)、angioが18施設(47.4%)であった(Fig. 9).

3-2-6 照射座標決定の画像(複数回答可)
照射座標決定の画像はCTが6施設(94.7%)、MRIが6施設(15.8%)、angioが7施設(18.4%)であった(Fig. 10).

3-2-7 照射中心点の数
照射中心点をいくつ用いるかについては基本的に1個が16施設(42.1%)で、1〜複数個は23施設(60.5%)となっ

3-3 ナロー・ビームの線量測定
ナロー・ビームはその線束がアイソセンタにおいて1〜3cmと小さく、至適線量算出のための線量評価が難しい、最も問題となる点は、側方電子平衡が成立しなくなることである。このため、線束より小さな検出器を用いて測定を行う必要がある。また、治療計画に必要なデータは、組織最大線量比(tissue maximum ratio: TMR)と軸外線量比(off axis ratio: OAR)および全散乱補正係数(total scatter factor: S_sc)である。

3-3-1 検出器の選択(複数回答可)
ナロー・ビームの測定に用いる検出器については、電離体検出器が18施設、半導体検出器が21施設、ダイヤモンド検出器が5施設、写真フィルムが16施設であった。

3-3-2 TMRの取得方法
TMRの取得方法で直接TMRを測定している施設は23施設、深部線量百分率(percent depth dose: PDD)を測定しTMRデータへ変換を行っている施設は15施設であった(Fig. 11).

3-3-3 OARの取得方法
OARの測定に用いる検出器については、電離体検出器が11施設、半導体検出器が13施設、ダイヤモンド検出器が4施設、写真フィルムが27施設であった(Fig. 12).

3-3-4 S_scの取得方法
S_scの測定に用いる検出器については、電離体検出器が23施設、半導体検出器が17施設、ダイヤモンド検出器が5施設、写真フィルムが13施設であった(Fig. 13).

3-3-5 評価方法
最終的なデータの評価を単独の検出器によって行う施設は7施設、複数の検出器による比較検討方法を用いる施設が23施設、未回答が8施設であった(Fig. 14).
ラジオセージリの現状と技術的ガイドライン（後藤・他）

Fig. 8 (a) 治療計画に用いるCT装置のメーカ別内訳。
(b) 治療計画に用いるMRI装置のメーカ別内訳。
(c) 治療計画に用いるangio装置のメーカ別内訳。

Fig. 9 SRSの治療計画に用いる画像の内訳。

Fig. 10 照射中心点決定に用いる画像の内訳。
3-4 幾何学的精度のQA

幾何学的精度のQA（quality assurance）は計画された照射中心点に対して、正確に照射するために大変重要であり、ライナックによるSTIでは欠かすことのできない事項である。

3-4-1 ガントリ、カウチの回転精度

施設で測定しているは35施設で、そのうち定期的に測定している施設は15施設、SRSの直前が17施設となっていた。測定していない施設は3施設であった。SRS時と月1回の定期的測定が最も多く全体の65%であった。毎日測定している施設も1施設あった（Fig. 15a）、測定方法は専用のツールを用いて行う施設が19施設、フィルムを用いる施設が19施設、他の方法が4施設であった（Fig. 16c）。

3-4-2 光学器と機械的アイソセンタの確認

この確認を行っている施設は33施設、行っていない施設は3施設、未回答が2施設であった（Fig. 16a）。測定頻度は月1回が最も多く全体の51%であった（Fig. 16b）。測定に専用のツールを用いて行う施設が15施設、フィルムを用いる施設が19施設、他の方が多い4施設であった（Fig. 16c）。

3-4-3 照射ごとの照射位置確認

ポートグラフを用いた照射ごとの照射位置確認を、何らかの方法で行っている施設は25施設、行っていない施設は8施設、未回答は5施設であった（Fig. 17）。

3-4-4 照射精度

各施設においての照射精度は、SRSについては1mm以内が23施設、1〜2mmが5施設、2mm以上が1施設
3-5 関与する人員

STIに関与する人員については、脳神経外科医が関与する施設は30施設（平均1.03人/施設）で、放射線腫瘍医が関与する施設は34施設（平均1.45人/施設）、他の医師が関与する施設が5施設（平均0.13人/施設）、医学物理士が関与する施設は3施設（平均0.08人/施設）、診療
放射線技師が関与する施設は全施設（平均2.37人/施設）、看護師が関与する施設は30施設（平均0.84人/施設）、その他の技師が関与する施設は4施設（平均0.13人/施設）であった。この回答は放射線技術全般に関わる人員に一致するとと思われるが、SRSを施行する施設では、治療担当放射線技師が2～3人は配置されていたことが確認できた。内訳をFig. 19に示す。

3-6 照射基準点と投与線量
線量投与のための基準点をどこにとるかは、
A. 画像上（病变）の中心
B. 画像上（病変）の辺縁
C. 浸潤を考慮した点
D. 機械精度と誤差のマージンをとった点
を、1. 腫瘍病変、2. 良性腫瘍、3. 転移性腫瘍、4. 原発性悪性腫瘍、5. 機能性疾患ごとに選択した回答を得た。結果をTable 1, Fig. 20に示す。

回答の合計はすべての種類の疾患で同じではなく、転移性腫瘍、原発性悪性腫瘍、良性腫瘍、血管病変の順で多く、機能性疾患では他の疾患の回答の半分以下の回答数であった。

この回答数の違いは、実際の施行数をある程度反映している可能性もあるが、たとえば機能性疾患においては、ライナックSTIにて一定数の症例を行っている施設はほとんどなく、ガンマナイフ施設においても比較的少ないと思われる。この機能性疾患に対する回答も含めて、今回のアンケート調査に対しては、必ずしも実際に施行した経験から回答しているとは限らず、施行した場合どのようなか、という仮定的な回答も含まれている可能性を留意すべきであろう。

また、線量投与のための基準点に着目すると、原発性悪性脳腫瘍では、浸潤を考慮して、画像で明らかに描出される病変より外側に、線量投与のための基準点を定める。という回答が多く、病変の辺縁で決定する割合が少なかった。転移性脳腫瘍にも若干その傾向がみられるが病変の辺縁で決定する割合が比較的多い。

原発性悪性脳腫瘍では、CTまたはMRIで造影される範囲を超えて、CTでの辺縁低吸収領域、あるいはMRIでのT2強調での高信号などで示される浮腫領域にも腫瘍組織が浸潤している。とされる。その意味で原発性悪性脳腫瘍において浸潤を考慮した点を線量投与のための基準点とすることは理解される。

転移性腫瘍においてても、辺縁低吸収領域、T2強調での高信号領域があり、原発性悪性腫瘍において同様に、浸潤を考慮した点を線量投与のための基準点とすることが原理的には正しいと思われる。しかしながら、悪性神経膠腫などの原発性悪性腫瘍よりもは浸潤の範囲がかかるに狭く、画像上で病変の辺縁としても大きな違いはないもののと思われる。

血管病変、特に脳動静脈奇形においては、病変の範囲を定めるのに、血管造影が必要であるが、それでも必ずしも奇形血管を同定するのは容易ではない。機械的誤差のみならず、臨床的な判断のうえでも多少のマージンをとらざるを得ないこともあり得よう。

治療線量を、辺縁線量で定義する場合、最大線量に対する辺縁線量レベルは、1.01照射の場合には、各疾患を合計すると50％辺縁線量レベルが10回、80％辺縁線量レベルが30回であった。Table 2, Fig. 21に疾患ごとの辺縁線量レベルを示す。分割照射の場合、50％辺縁線量レベルで行うとの回答はなく、すべてが80～100％辺縁線量レベルで行うことであった。

ライナックでは単一のアイソセンタによる球形照射体積の治療の場合には、最大線量に対する辺縁線量レベルは80％で規定するのが通常である。複数のアイソセンタによる治療、すなわち複数の球形照射体積を組み合わせて照射する場合には、球形照射体積の重なり部分で線量が倍加されるため、最大線量に対する辺縁線量レベル50％で定めることが多い。良性腫瘍に対する1回照射（SRS）で辺縁線量レベル50％で規定の割合が多いのは、良性腫瘍では比較的軽度な形状が多い。複数の球形照射体積を組み合わせて標的体積を囲むことが多いためと推測される。一方、転移性腫瘍では辺縁線量レベル80％での治療が多い。転移性腫瘍では比較的球形に近い形態が多く、単一のアイソセンタ、球形照射体積での治療が好まれるためである。分割照射（SRT）では、すべての回答で80～100％辺縁

Fig. 17 照射ごとの照射位置確認。
ラジオサージェリの現状と技術的ガイドライン(後藤・他)

Fig. 18 (a) SRS時の照射精度、
(b) SRT時の照射精度。

Fig. 19 STIに関与する人員。

Table 1 疾患による投与線量決定のための基準点。

<table>
<thead>
<tr>
<th></th>
<th>A. 病変の中心</th>
<th>B. 病変の辺縁</th>
<th>C. 浸潤を考慮</th>
<th>D. 誤差を考慮</th>
<th>計</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>血管性</td>
<td>9 (31%)</td>
<td>16 (55%)</td>
<td>3 (10%)</td>
<td>1 (3%)</td>
</tr>
<tr>
<td>2.</td>
<td>良性</td>
<td>11 (33%)</td>
<td>19 (58%)</td>
<td>2 (6%)</td>
<td>1 (3%)</td>
</tr>
<tr>
<td>3.</td>
<td>転移</td>
<td>13 (34%)</td>
<td>18 (47%)</td>
<td>5 (13%)</td>
<td>2 (5%)</td>
</tr>
<tr>
<td>4.</td>
<td>原発</td>
<td>11 (31%)</td>
<td>9 (26%)</td>
<td>14 (40%)</td>
<td>1 (3%)</td>
</tr>
<tr>
<td>5.</td>
<td>機能性</td>
<td>5 (16%)</td>
<td>6 (19%)</td>
<td>2 (15%)</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>合計</td>
<td>49 (33%)</td>
<td>68 (46%)</td>
<td>26 (18%)</td>
<td>5 (3%)</td>
<td>93</td>
</tr>
</tbody>
</table>
線量レベルで治療線量を規定しているが、SRTでは複数の球形照射体積を組み合わせて照射することは時間的にも困難であり、また位置の精度が多少劣ることなどから、実際上、単一のアイソセンタで治療されているのではないかと思われる。

病変ごとの線量は、回答数が少なく、統計が困難であるが、回答数の比較的多かった主要疾患についてTable 3に示す。転移性腫瘍では、回答された標準的線量の平均は23 Gyである。一般に20 Gy以上での腫瘍制御が良好とされることからも妥当な値と思われる。

良性腫瘍では統計上、回答のあったすべての疾患の線量を平均すると平均17.7 Gyであった。比較的照射することでの多いたん神経腫瘍では、過去においては20 Gy以上を投与する施設も多かった。しかし、顔面神経マ

Table 2 別の線量線量レベル

<table>
<thead>
<tr>
<th></th>
<th>50%</th>
<th>80%</th>
</tr>
</thead>
<tbody>
<tr>
<td>血管性</td>
<td>2 (17%)</td>
<td>10 (83%)</td>
</tr>
<tr>
<td>良性</td>
<td>4 (40%)</td>
<td>6 (60%)</td>
</tr>
<tr>
<td>転移性</td>
<td>1 (13%)</td>
<td>7 (88%)</td>
</tr>
<tr>
<td>原発性</td>
<td>3 (30%)</td>
<td>7 (70%)</td>
</tr>
<tr>
<td>合計</td>
<td>10 (25%)</td>
<td>30 (75%)</td>
</tr>
</tbody>
</table>

4. ガンマユニットによるSTIシステムの概要

4-1 ガンマナイフの現状

ガンマナイフは、スウェーデンのロリンスカ大学脳神経外科のLars Leksellらによって開発されたコバルト60を利用したSRS専用機である。1968年に1号機がストックホルムに設置され、日本では、1990年に東京大学附属病院に1号機が設置された。1996年4月から保険適用になり、国内で25台以上が稼動し、1998年末まで国内の治療症例総数は18,000例を超えている。

4-2 アンケート結果

回答のあった施設の症例数は100例程度から1,000例を超える施設であった。線量測定および機器のQAは販売元のELEKTA社とのメンテナンス契約で行われており、施設独自のQAを行っている施設は少ない。治療を行う場合の構成員は、脳外科医と腫瘍放射線技師
4-3 ショット数

ガンマニューフの施設ではライナックでいう照射中心点の数をショット数と表現するが、1人に対する最大ショット数は18〜48とばらつきはあるが半数以上が30を超え、今後の適用範囲の拡大から最大ショット数は増加していくと考えられる。

4-4 問題点の考察

線量測定および機器のQAを、ELEKTA社とのメンテナンス契約のみで済ませている施設が多いが、ラジオサージェリとして画像取得装置を含めたシステム全体を、各施設独自でも行う必要があると考えられる。治療を行う場合の構成員に放射線科医がいない場合が多い。また、治療範囲は広範囲が拡大されつつあり、より高い精度とコリメータの種類の増加などを求められている。

4-5 ライナックでのSRSとガンマニューフとの比較

ガンマニューフはSRS専用機として開発され、装置の精度は高くなるが操作が簡便である。また、コパルト60を利用しているため出力が安定している。製造元のELEKTA社によるメンテナンスが定期的に全施設で行われ、装置の精度を保つようにしている。しかし、非常時には業務従事者が被曝するおそれがある。また、ポートグラフなどによる照射のご位置確認ができない、などの問題点がある。その他、治療装置そのものが高精度であるからこそ、CT、MRI、angioなどのデータ処理装置の精度や治療計画装置の精度の管理についてのQCを行う必要があると思われた。したがって、最終的な照射精度はライナックSRSとガンマニューフでは変わらないと判断される。ただし、ライナック施設の場合には、正しく測定されたビームデータを用いて、精度管理されたライナックを用いた場合ということになる。

人員については、診療放射線技師と脳神経外科医との連携で行われている施設が多く、脳神経外科医のみで行う施設もいくつかあった。

5. 問題点のまとめと考察

調査の時点で10MVを超えるエネルギーを使用している施設はなかったが、より高いエネルギーを用い
からは電離線検出器と半導体検出器が多く使用されてい
た。ダイヤモンド検出器も半導体検出器であるので
で、ナロー・ビームの線量測定において、半導体検出
器は多くの施設で積極的に用いられていた。
しかししながら、多くの検出器を有しながら、投与線
量に最も影響のあるS_{p}の評価を、「複数の検出器で評
価する」は23施設(60％)であり、15施設(40％)が「単独
の検出器で評価する」(未回答を含む)としており、SRS
の初期段階としてそれは適切ではないと考えられ
た。
ライナックによるSTIIは、サイバーイナフなどのロ
ボット型治療器を除くと、ほとんどの場合ガントリを
回転させながら照射する振り子運動照射であり、これ
にカウチの回転によるローテーションを行うことでノ
ンコプランな照射を行っている。これら回転精度につ
いては経年変化などにより狂いが生じる可能性もある
ため定期的な検査を必要とする。また、照射座標設定時
にはフロント、サイドのレーザポイントを用いて行う
が、レーザポイントの交点がアイセンタからずれて
いれば、この狂いを間接的に検出することが可能であ
る。この測定については、ほとんどの施設で行われて
いるためデータを積み重ねて経年変化等を観察しては
いない。なお、慶應義塾大学ではビデオカメラによる照
射中心点の確認方法を開発し運用している。

6. 線量測定の方法
線量測定には基本となるものが必要であり、ナロー
ー・ビーム以外の部分については、日本医学放射線物
理学会(JARP)の標準測定方法がある。ナロー・ビー
ムの線量測定についても、いくつかの指針が示されて
いる文献があるが、この班として示す必要性を感じ
た。
日本の放射線治療のトレーサビリティでは、絶対線
量の測定は校正されたJARP型の指頭型電離線検出器
で行うこととされている。したがって半導体検出器や
マイクロチャネルなどの他の検出器単独で、絶対線量
の測定を行うべきではない。しかしながらJARP型の
電離線検出器では検出器サイズが大きすぎて、直接ナ
ロー・ビームの絶対線量の測定を行うことができな
い。そのために写真フィルム、マイクロチャネルを
用いてナロー・ビームの相対測定を行う。
測定に用いるすべての検出器はJARP型の電離線検
出器との比較測定を行う。その一つは、基準照射野
(10×10cm²)でのTMRによるレスポンスを事前に調べる
ことである。その際、使用線質の校正深において
相互比較と行う必要がある。
写真フィルムを検出器として用いる場合の注意は、
写真フィルムは、検出器としてのレスポンスが大き
く、そのままでは再現性に問題があるので、データを
取得する直前に線量-黑化度校正曲線を作成すること
が必須である。よく使われているディウォックの
XV-2フィルムの場合は、約180Gy前後で黒化度4.0に
達するため、5〜200Gyの間をできるだけ密に測定す
る。現像処理はすべての写真フィルムを連続して処理
し、ベース用の未照射のものを作成する。黒化度を測定するマイクロビームメーターのスキャンビーム
サイズはできるだけ小さい方が望ましい。その他、
写真フィルムは図のロットのものを用い、得られた黒化
度はすべて校正曲線に内挿し線量に変換してから使用
する。

6-1 TMRの測定
線束軸に沿った方向の線量評価の基となるTMRに
ついては、検出器サイズが3mmφ×3mm以下のマイク
ロチャンバーを用いることを推奨する。使用するすべて
のコリメータについて測定が必要で、多くの場合は円
形小照射野。測定範囲はファントム厚200mmまで
について線源-検出器間距離を100cmとして直接TMR
測定を行うこと。この際、検出器の実効中心は左および
前方のレーザポイントにて高精度にアイセンタ
へ合致させ、データは照射野ごとに最大線量の深さを
1.00として係数化する。
ナロー・ビームのような側方電子平衡が成立してい
ない領域においては、PDDからのTMRへのデータ変
換にKhanらの式を用いることは、前提条件が満た
されないため推奨しない。

6-2 OARの測定
線束の水平方向の線量評価の基となるOARは、写
真フィルムの使用を推奨する。他の検出器を用いる場
合は高精度なデータを得るため3-Dの水ファントム
シミュレーションが必要となる。照射野はTMRと同じで
使用するすべてのコリメータの測定が必要である。測定深
度は使用される線質の校正深、もしくは臨床で用いられる
深さが望ましい。OARデータは最大線量点を必ず検
出器が通るようにインプレーン、クロスプレーンのスキャン
を行い、データは照射野ごとに最大線量点を
1.00として係数化する。ただし、OARデータは使用す
る治療計画装置によって要求される測定深が異なるの
で注意が必要である。

6-3 S_{p}の測定
S_{p}については、いわゆる出力(output factor)の測定
で、基準照射野のオープン正方形照射野において、線
束軸上の最大線量値を1.00として係数化する。S_{p}は
以下の式にて表すことができる。
ここで, $D (d_{\text{max}}, r)$ は直径 r の円形小照射における最大線量で, $D (d_{\text{max}}, \text{ref})$ は基準照射における最大線量となる.

すべてのデータは校正深において測定し, それぞれのTMRAから最大線量値での値に変換する. 検出器は写真フィルム, マイクロチェンバーにて使用する. また, 半導体検出器などの測定器で比較測定することが望ましい.

測定は, すべてのコリメータの円形小照射野について行う必要がある. S_c, r の評価において注意としては, 絶対評価が必要である基準照射野においていうことである. 写真フィルム, マイクロチェンバーでは相対値測定を行い基準照射野での基準電離線における絶対線量から S_c, r で算出する. また, ナロー・ビーム測定の際にライナックのセキンドウジョウのサイズを変えた場合には, S_c, r のビームデータが同じテーブル上にはないのが一般的である. これは, 一次コリメータ以降の散乱線の寄与率が異なることにより S_c, r が同じとならないためである.

JARPでいう照射野係数という用語をナロー・ビームのS_c, rと混同している場合があるが, 物理的成分の概念が異なるため, 結果的に同じことを表していても, ナロー・ビームの評価ではS_c, rもしくはROFという用語を用いるのが適切であり, 欧米の論文はほとんどがこれらの用語で表されている.

7. おわりに

STIの現状調査を行うことにより, 現在のSTIの動向と問題点の把握ができた. STIを行うためのQAのガイドライン, 特にナロー・ビームの線量測定についての方向性を示した.

現在, STIは特殊な治療の一つに位置づけられるが, 今後, 新規のライナック施設やリプレイスの際には多くの施設でのこの要件を満たすような機器が導入されることが予測される. その際には機器の精度管理のための投資を惜しまないように心掛けながらいたい.

謝辞

本研究の進捗活動にてアンケート調査にご協力いただき、また各医療機関の方々に、この場をお借りいたしまして御礼を申し上げます。また活動方針に対して助言をいただけました広島大学医学部 東川 誠先生, 京都大学医学部 永田 靖先生に深謝いたします。
16) 趙智誠，林靖之，内田孝俊，他：Stereotactic radiation therapy with linear accelerator: The accuracy of the alignment and the portal film verification. 日本放射線誌，55，593-596，(1995).
17) 後藤総一，相川勝彦，松島繁知：ポータルイメージを用いたライナクラジオサージェリーにおける標的座標への照射精度と再現性の検討. 日放技学誌，53(6)，671-676，(1997).
20) 日本医学放射線学会物理部会編：放射線治療における高エネルギーX線および電子線の吸収線量の標準測定法. 通商産業研究社，東京，(1986).
21) 都丸健三：Stereotactic Radiation Surgery（極小照射野）の線量測定マニュアル，JARP，(1994).
24) 後藤総一，林靖之，南和徳，他：直線加速器によるSTEREOTACTIC RADIOSURGERYのためのQUALITY ASSURANCE，日放技会誌，9(2)，131-138，(1997).
26) 保科正夫，奈良鉄造，後藤総一，他：第54回総会学術大会シンポジウムII，放射線治療における出力測定の物理的問題. 日放技学誌，55(3)，244-247，(1999).