日本放射線技術学会雑誌
Online ISSN : 1881-4883
Print ISSN : 0369-4305
ISSN-L : 0369-4305
ノート
外部放射線治療における高密度物質周辺部の線量計算精度検証
佐々木 誠中田 学中村 光宏石原 佳知藤本 隆広鶴田 裕輔矢野 慎輔東村 享治
著者情報
ジャーナル フリー

2016 年 72 巻 9 号 p. 735-745

詳細
抄録

It is generally known that the dose distribution around the high-density materials is not accurate with commercially available radiation treatment planning systems (RTPS). Recently, Acuros XB (AXB) has been clinically available for dose calculation algorithm. The AXB is based on the linear Boltzmann transport equation – the governing equation – that describes the distribution of radiation particles resulting from their interactions with matter. The purpose of this study was to evaluate the dose calculation accuracy around high-density materials for AXB under three X-rays energy on the basis of measured values with EBT3 and compare AXB with various dose calculation algorithms (AAA, XVMC) in RTPS and Monte Carlo. First, two different metals, including titanium and stainless steel, were inserted at the center of a water-equivalent phantom, and the depth dose was measured with EBT3. Next, after a phantom which reproduced the geometry of measurement was virtually created in RTPS, dose distributions were calculated with three commercially available algorithms (AXB, AAA, and XVMC) and MC. The calculated doses were then compared with the measured ones. As a result, compared to other algorithms, it was found that the dose calculation accuracy of AXB at the exit side of high-density materials was comparable to that of MC and measured value with EBT3. However, note that AXB underestimated the dose up to approximately 30% at the plane of incidence because it cannot exactly estimate the impact of the backscatter.

著者関連情報
© 2016 公益社団法人 日本放射線技術学会
前の記事 次の記事
feedback
Top