日本放射線技術学会雑誌
Online ISSN : 1881-4883
Print ISSN : 0369-4305
ISSN-L : 0369-4305
原著
99mTc を使用した体幹部 SPECT および SPECT/CT における SUV 精度向上のための評価 : BCF 算出ファントムと画像再構成時の補正法の最適化
中村 優斗甲谷 理温阿部 俊憲中原 佑基
著者情報
ジャーナル フリー

2021 年 77 巻 9 号 p. 921-931

詳細
抄録

Purpose: The purpose of this study was to evaluate the best phantom for calculating the becquerel calibration factor (BCF) and correction method to obtain the improvement of standardized uptake value (SUV) accuracy in both single photon emission computed tomography (SPECT) and SPECT/CT. Method: A SPECT/CT scanner was used in this study. BCFs were calculated using four phantoms with different cross sections including National Electrical Manufacturers Association International Electrotechnical Commission body phantom (NEMA IEC body phantom) filled with 99mTcO4-, and five correction methods were used for reconstruction. SUVs were calculated by the NEMA IEC body phantom and pediatric phantom in house with these BCFs. We then measured SUVmean in the background region of the NEMA IEC body phantom, SUVmax and SUVpeak of the 37-mm-diameter sphere. Results: In the SPECT scanner, SUVmean and SUVmax measured 1.04 and 4.02, respectively, in the case of BCF calculation and SUV measurement using NEMA IEC body phantoms without corrections. In the SPECT/CT scanner, SUVmean with CT attenuation correction (AC) was in agreement with the theoretical values using each phantom. SUVmax showed the same trend. Conclusion: In the SPECT scanner, it is possible to obtain a highly accurate SUV by using a phantom that matches the size of the subject for BCF calculation and without correction. In the SPECT/CT scanner, highly accurate SUVs can be obtained by using CT-based attenuation correction, and these values do not depend on the size of the BCF calculation phantom.

著者関連情報
© 2021 公益社団法人 日本放射線技術学会
前の記事 次の記事
feedback
Top