症例

経空腸瘻投与の高張食塩水が原因と思われた限局性小腸炎の1例

福井総合病院外科、福井大学医学部第1外科
森川充洋 泉俊昌 藤岡雅子 林泰生 恩地英年 山口明夫

症例は79歳、男性。脳梗塞による嘔下障害のため空腸瘻を造設し、ラコール®1,200 kcal/24hr、食塩3g/分3の投与にて管理されていた。経腸栄養開始後2カ月後、腹痛が出現し、CTにて空腸瘻カテーテル周囲の腸管の壁肥厚と壁内ガス像、多量の腹水を認め、腹腔穿刺を施行すると、腹水は漏れしグラム陰性桿菌を認めため緊急手術となった。空腸瘻カテーテル周囲の腸管に限局性の腸炎を認めるも穿孔は認められなかった。腸炎の原因として、空腸瘻のカテーテル自体による影響を考えていくと、食塩の投与方法が疑われた。食塩1gを20mlに溶解すると灌流圧は1540mOsm/mlであり、腸管内が高灌流圧となり腸炎を引き起こしたのではないかと考えられた。空腸瘻より食塩を投与する際は、食塩を多くの水分で希釈し灌流圧を下げて投与するか、あるいは経静脈的に投与するような工夫が必要であると考えられた。

索引用語：限局性小腸炎、経腸投与、高張食塩水

緒言

経口摂取不能な高齢者や重症患者に対する経腸栄養の重要性は、近年広く認識されるようになった。しかし、既存の栄養剤では、ナトリウム含有量が過少となり、高ナトリウム血症をきたす症例が存在する。しかし、食塩の補充の方法について一定の見解がないため、投与方法は施設により異なる状況である。今回、高張食塩水を空腸瘻より投与することで限局性小腸炎をきたした症例を経験した。われわれが調べた限りではこのような報告はなく、食塩の投与方法について考えさせられる1例と考えられたので、文献的考察を加えて報告する。

症例

患者：79歳、男性。
主訴：腹痛。
既往歴：脳梗塞。
現病歴：脳梗塞による嘔下障害および上頷管閉塞悪性性十二指腸閉塞症のため、空腸瘻を造設。造設後は当院内科にてラコール®を1,200kcal/24hrで投与し管理していた。低Na血症（Na123mEq/l）を認めるようになったため、腸瘻造設後第2週より食塩3g/分3の投与を開始した。食塩は1gを20mlの水中で希釈し空腸瘻より注入されていた。腸瘻造設後第4週目に、腸瘻カテーテルが閉塞し交換した。その際、カテーテルの先端は腸管内に留置されていることが確認され、腸管は異常を認めなかった（図1）。腸瘻造設後第8週（食塩投与開始後第6週）に腹痛が出現し、当科紹介となった。

入院時現症：腹部全体に圧痛および腹膜刺激症状を認めた。

入院時血液検査所見：WBC5,000/mm³、CRP3.28 mg/dl。

腹部CT検査：空腸瘻カテーテル先端が位置する部位の腸管を中心に、壁肥厚、壁内ガス像を認め、多量の腹水を認めた（図2）。

腹腔穿刺により漏れした腹水を採ち、鏡検にてグラム陰性桿菌を認めた。消化管穿孔を疑い緊急手術を施行した。

術中所見：空腸瘻カテーテル周囲の腸管は浮腫状で強い発赤を認めた。漏れした腹水を認めながら、腸管穿孔を認めなかった（図3）。空腸瘻からの術中造影で、腸管内腔に鉛直状の変化を認めたが穿孔は認めなかった。
図1 動脈造影（動脈造影術後第4週）：チューブの先端は腸管内に留置され、腸管も異常を認めなかった。

図2 術前CT検査：空腸管カテーテル先端部の腸管を中心に、壁肥厚、壁内ガス像を認め、多量の腹水を認めた。

図3 術中写真：空腸管カテーテル周囲の腸管は浮腫状で強い発赤を認め、凝固した腹水を認めたが、腸管穿孔は認めなかった。

図4 術中腸管造影：腸管内腔の収縮状の変化は認めだが穿孔は認めなかった。チューブの先端は確定して腸管内に留置されていた。

考察

経口摂取不能な高齢者や重症患者に対する経腸栄養の重要性は、近年広く認識されるようになっている。しかし、既存の栄養剤では、ナトリウム含有量が過少となり、低ナトリウム血症をきたす症例が存在するため、本来、健常人では、電解質に対する大きな調節能力が
経管投与高張食塩水による小腸炎の1例

図5 術後CT検査：腸管の浮腫状変化は消失していた。

図6 術後腸管造影：腸管内腔の構造変化は消失し、小腸に異常を認めなかった。

あり、ナトリウムの1日摂取量は30mEq(1.7g)から250mEq(14.7g)まで大変幅があり、1日の必要量に関しては一定の見解がない。しかし、経腸栄養が必要となるような高齢者や重症患者では、調節能力の低下や必要量の増加が認められ、容易に低ナトリウム血症となり得る。現在、食塩を多く含む医薬品としての経腸栄養剤は市販されておらず、低ナトリウム血症が生じた場合は、

①栄養剤投与後に、食塩水を注入する。
②栄養剤そのものに食塩を混入する。
③経静脈的に塩化ナトリウムを補充する。

のいずれかによりナトリウムを補充することとなる。

１の方法が最も簡便であり多く用いられていると思われるが、計算する水溶量については一定の見解が少ない。今回の症例は、食塩1gを20mlの水に希釈し空腸より注入するという投与法のもとで、限局性の小腸炎を発症した。腸炎の原因として、高濃度の食塩水を注入した際に、腸管内腔が特に高浸透圧になり、腸管壁の間質や腸管の細胞から空腸内腔に水が拡散し、腸管の細胞内水が起こったためではないかと推測される。このような症例は、1983年～2007年の間にについて医学中央雑誌で検索する限り報告例は検索できないが、高濃度で食塩水を注入することは危険と考えられる。食塩1gを20mlの水に希釈すると、浸透圧は、1540mOsm/mlと著明な高張液となる。血漿浸透圧である285mOsm/ml付近に相当する方が安全であり、1g投与の際は100ml以上の水に希釈すべきであると考えられる。

②の方法については、市販の栄養剤に食塩を混入すると、脂肪の粒径が大きくなって吸収が悪くなるといわれており、推奨されない。現在非常に多くの経腸栄養剤が市販されているにもかかわらず、電解質の組成は概ね一定範囲内であり、ナトリウム含有量は3g/1,000kcalにも満たない。食品ではナトリウム含有量は多いもののみられるが、食塩としての含有量が少なく、塩分が少ないために、逆に低ナトリウム血症を助長したという報告もありますので注意が必要である。

今後、食塩の含有量の多い医薬品の経腸栄養剤は市販されることが期待されるが、現時点での経腸栄養剤利用時の低ナトリウム血症に対する対応として、食塩を1g/100ml以下の濃度で経腸投与するか、あるいは経静脈的に塩化ナトリウムを補充するべきであると考えられる。

結 語

空腸より投与した高張食塩水が原因と思われた限局性小腸炎の1例を経験した。経腸栄養管理下の食塩投与に関して考えさせる1例であり、若干の考察を加え報告した。

なお、本症例は2007年2月、第22回日本静脈栄養栄養学会総会において発表した。

文 献

1) 後藤美紀、尾崎信子、藤本紀子他：重症治療における経腸栄養の問題点—ナトリウム補充について

—98—
A CASE OF REGIONAL ENTERITIS SUSPECTED TO BE CAUSED BY INGESTION OF HYPEROSMOLAR SALINE SOLUTION THROUGH JEJUNOSTOMY FEEDING TUBE

Mitsuhiko MORIKAWA, Toshimasa IZUMI, Masako FUJIOKA, Yasuo HAYASHI, Hidetoshi ONCHI and Akio YAMAGUCHI*
Department of Surgery, Fukui General Hospital
*First Department of Surgery, Faculty of Medicine, University of Fukui

A 79-year-old male patient who developed difficulty of swallowing after cerebral infarction, was managed by a jejunostomy tube feeding with Lacol® (1200Kcal/24hrs) and NaCl 3gr/in 3 divided doses. The patient developed abdominal pain 2 months after starting the tube feeding and a CT study revealed thickening of the jejunal wall around the tube, abnormal gas in the intestinal wall and considerable amount of ascites.

Aspiration of the peritoneal cavity revealed turbid fluid with many gram negative rods. An emergent laparotomy was performed. Inflammatory changes of the regional jejunal wall around the tube was observed without perforation. The cause of the inflammation was thought to be due to the administration of salt rather than mechanical irritation the tube. One gram of salt dissolved in 20ml of water gives osmotic pressure of 1540mOsm/ml which was thought to have caused hyperosmosis in the intestine causing inflammation. In case of administering salt through a jejunal feeding tube, we believe the solution should be diluted properly or given intravenously.