ハウスおよび露地で生育したカキ‘前川次郎’の果実成熟特性の比較

伊藤 寿*・西川 豊・前川哲男・輪田健二**
三重県科学技术振興センター農業研究部 515 - 2316 松阪市嬉野川本町

Comparison of Fruit Ripening of ‘Maekawa Jiro’ Persimmon Grown in the Plastic House and the Open Field

Hisashi Ito*, Yutaka Nishikawa, Tetsuo Maegawa and Kenji Wada**
Agricultural Research Division, Mie Prefectural Science and Technology Promotion Center, Matsuoka, Mie 515 - 2316

Summary

Fruit ripening process of ‘Maekawa Jiro’ persimmon (Diospyros kaki), grown in the plastic house and the open field, was investigated from 1999 to 2001. The plastic house was covered with polyvinyl chloride film from early January to late June or early July and then uncovered. Additionally, the plastic house was heated at night from early January to early June. Air temperature in the plastic house was higher than that in the open field before full bloom and for 120 days thereafter. The plastic house-grown fruits began to color about 130 days after full bloom, which was approximately 20 days later than that of the open field-grown fruits; subsequent coloring in the former was also slower. Sucrose content in the open field-grown fruits increased gradually concurrent with the color development, whereas that of the plastic house-grown fruits did not increase appreciably until about 180 days after full bloom; it increased rapidly as the fruits approached maturity. Compared with the open field-grown fruits, the plastic house-grown fruits attained the same Brix and flesh firmness at a lower index of coloration at maturity. We attribute this to a possible high-temperature-mediated inhibition of pigment formation. These results indicate that the plastic house-grown ‘Maekawa Jiro’ persimmon fruits accumulated more sugars at a softer flesh firmness for the same degree of coloration. Hence, plastic house-grown ‘Maekawa Jiro’ persimmon fruits should be harvested when the fruit skin at the apex becomes 5 to 6 according to the standard color chart.

Key Words: forcing culture, persimmon fruit, plastic house, ripening, skin color.

緒 言

カキは、日本各地に多数の在来種があるものの、経済栽培されている品種は限られている。特に、甘ガキでは優良な早生品種がないため、その出荷時期は10〜11月に集中している。このため、ハウスを用いた促成栽培は早期出荷による高価格販売と作業労力の効率化にとって有利な作型と考えられ、甘ガキでは岐阜県や静岡県などで、また、淡ガキでは和歌山県や奈良県などで取り組まれている。

ハウス栽培における果実発育について、“富有”や“西村早生”で、地上部の加温によって成熟が促進されることとともに果実の生育日数が短縮されると報告されている（中條、1982; 新川・松村、1992）。さらに、“刀根早生”では地上部加温に加えて地下部を20℃に加温することにより（Fumuro・Utsunomiya、1999）、“西村早生”では加温や冷却によって地温を20℃に保つことにより（松村ら、1994）、それぞれ果皮の着色が促進されることが示されていている。他方、'西条'では、無加温、加温のいずれの栽培でも着色が進みにくく、収穫期はあまり早くなりないと報告がある（今岡・小豆沢、1992; 持田・山本、2000）。このようなハウス栽培におけるカキ果実の成熟促進程度の報告による違いには、成熟期の温度の差異が関係していると考えられる。

温度は果実の発育に大きな影響を及ぼし、特に、成熟期の高温は果実の成熟に対して抑制的に作用すると報告されている（中條、1982; 森永・篠原，1994; 郷ら、1988）。また、同じ品種でも栽培地域や年次により果実の発育や成熟の様相が異なる、これには温度が深く関係している（中條、1982; 平・板村、1989; 郷ら、1990）。ハウスで栽培された果実においては、糖蓄積の促進や肥大の促進あるいは抑制があり（Fumuro・Utsunomiya、1999; 松村ら、1994）、また、露地栽培の果実よりも軟化しやすいことも報告されている（疎磨ら、2001）。このようなハウス栽培の果実は、露地栽培の果実は異なる発育や成熟特性を示すが、これは果実収穫期の温度が関係していると考えられる。

2004年7月9日 受付 2004年11月15日 受理
本報告の一部は開発学会平成13年度春季大会および平成14年度春季大会で発表した。
* Corresponding author (E-mail: tohchi13@pref.mie.jp).
** 現在：三重県科学技术振興センター総合研究企画部.
しかし、カキ果実の発育や成熟時における温度との関係から論じた報告は少ない。また、カキは、未熟な果実の収穫を良く早く起こし（板村、1986；高田、1967；1982）、可食状態の果実においても、色が進んだもののは背部が収穫後の軟化が遅いとされている（板村ら、1996）。これらのこととは、果実の成熟度が軟化の難易などの間には密接な関係があり、ハウス栽培の果実が軟化しやすいことに関して果実の成熟度が関係することを示唆している。そこで本研究では、果実の成熟度と軟化の難易との関とに密接な関係があり、ハウス栽培の果実が軟化しやすいということに関して果実の成熟度が関係することを示唆している。そこで本研究では、果実の成熟度と軟化の難易との関に密接な関係があり、ハウス栽培の果実が軟化しやすいことに関して果実の成熟度が関係することを示唆している。そこで本研究では、果実の成熟度と軟化の難易との関人に密接な関係があり、ハウス栽培の果実が軟化しやすいことに関して果実の成熟度が関係することを示唆している。そこで本研究では、果実の成熟度と軟化の難易との関人に密接な関係があり、ハウス栽培の果実が軟化しやすいことに関して果実の成熟度が関係することを示唆している。そこで本研究では、果実の成熟度と軟化の難易との関人に密接な関係があり、ハウス栽培の果実が軟化しやすいことに関して果実の成熟度が関係することを示唆している。そこで本研究では、果実の成熟度と軟化の難易との関人に密接な関係があり、ハウス栽培の果実が軟化しやすいことに関して果実の成熟度が関係することを示唆している。そこで本研究では、果実の成熟度と軟化の難易との関人に密接な関係があり、ハウス栽培の果実が軟化しやすいことに関して果実の成熟度が関係することを示唆している。そこで本研究では、果実の成熟度と軟化の難易との関人に密接な関係があり、ハウス栽培の果実が軟化しやすいことに関して果実の成熟度が関係することを示唆している。そこで本研究では、果実の成熟度と軟化の難しいの関人に密接な関係があり、ハウス栽培の果実が軟化しやすいことに関して果実の成熟度が関係することを示唆している。そこで本研究では、果実の成熟度と軟化の難しいの関人に密接な関係があり、ハウス栽培の果実が軟化しやすいことに関して果実の成熟度が関係することを示唆している。そこで本研究では、果実の成熟度と軟化の難しいの関人に密接な関係があり、ハウス栽培の果実が軟化しやすいことに関して果実の成熟度が関係することを示唆している。そこで本研究では、果実の成熟度と軟化の難しいの関人に密接な関係があり、ハウス栽培の果実が軟化しやすいことに関して果実の成熟度が関係することを示唆している。そこで本研究では、果実の成熟度と軟化の難しいの関人に密接な関係があり、ハウス栽培の果実が軟化しやすいことに関して果実の成熟度が関係することを示唆している。そこで本研究では、果実の成熟度と軟化の難しいの関人に密接な関係があり、ハウス栽培の果実が軟化しやすいことに関して果実の成熟度が関係することを示唆している。そこで本研究では、果実の成熟度と軟化の難しいの関人に密接な関係があり、ハウス栽培の果実が軟化しやすいことに関して果実の成熟度が関係することを示唆している。そこで本研究では、果実の成熟度と軟化の難しいの関人に密接な関係があり、ハウス栽培の果実が軟化しやすいことに関して果実の成熟度が関係することを示唆している。そこで本研究では、果実の成熟度と軟化の難しいの関人に密接な関係があり、ハウス栽培の果実が軟化しやすいことに関して果実の成熟度が関係することを示唆している。そこで本研究では、果実の成熟度と軟化の難しいの関人に密接な関係があり、ハウス栽培の果実が軟化しやすいことに関して果実の成熟度が関係することを示唆している。そこで本研究では、果実の成熟度と軟化の難しいの関人に密接な関係があり、ハウス栽培の果実が軟化しやすいことに関して果実の成熟度が関係することを示唆している。そこで本研究では、果実の成熟度と軟化の難しいの関人に密接な関係があり、ハウス栽培の果実が软化しやすいことに関して果実の成熟度が関係することを示唆している。そこで本研究では、果実の成熟度と軟化の難しいの関人に密接な関係があり、ハウス栽培の果実が軟化しやすいことに関して果実の成熟度が関係することを示唆している。そこで本研究では、果実の成熟度と軟化の難しいの関人に密接な関係があり、ハウス栽培の果実が軟化しやすいことに関して果実の成熟度が関係することを示唆している。そこで本研究では、果実の成熟度と軟化の難しいの関人に密接な関係があり、ハウス栽培の果実が軟化しやすいことに関して果実の成熟度が関係することを示唆している。そこで本研究では、果実の成熟度と軟化の難しいの関人に密接な関係があり、ハウス栽培の果実が軟化しやすいことに関して果実の成熟度が関係することを示唆している。そこで本研究では、果実の成熟度と軟化の難しいの関人に密接な関係があり、ハウス栽培の果実が軟化しやすいことに関して果実の成熟度が関係することを示唆している。そこで本研究では、果実の成熟度と軟化の難しいの関人に密接な関係があり、ハウス栽培の果実が軟化しやすいことに関して果実の成熟度が関係することを示唆している。そこで本研究では、果実の成熟度と軟化の難しいの関人に密接な関係があり、ハウス栽培の果実が軟化しやすいことに関して果実の成熟度が関係することを示唆している。そこで本研究では、果実の成熟度と軟化の難しいの関人に密接な関係があり、ハウス栽培の果実が軟化しやすいことに関して果実の成熟度が関係することを示唆している。そこで本研究では、果実の成熟度と軟化の難しいの関人に密接な関係があり、ハウス栽培の果実が軟化しやすいことに関して果実の成熟度が関係することを示唆している。そこで本研究では、果実の成熟度と軟化の難しいの関人に密接な関係があり、ハウス栽培の果実が軟化しやすいことに関して果実の成熟度が関係することを示唆している。そこで本研究では、果実の成熟度と軟化の難しいの関人に密接な関係があり、ハウス栽培の果実が軟化しやすいことに関して果実の成熟度が関係することを示唆している。そこで本研究では、果実の成熟度と軟化の難しいの関人に密接な関係があり、ハウス栽培の果実が軟化しやすいことに関して果実の成熟度が関係することを示唆している。そこで本研究では、果実の成熟度と軟化の難しいの関人に密接な関係があり、ハウス栽培の果実が軟化しやすいことに関して果実の成熟度が関係することを示唆している。そこで本研究では、果実の成熟度と軟化の難しいの関人に密接な関係があり、ハウス栽培の果実が軟化しやすいことに関して果実の成熟度が関係することを示唆している。そこで本研究では、果実の成熟度と軟化の難しいの関人に密接な関係があり、ハウス栽培の果実が軟化しやすいことに関して果実の成熟度が関係することを示唆している。そこで本研究では、果実の成熟度と軟化の難しいの関人に密接な関係があり、ハウス栽培の果実が軟化しやすいことに関して果実の成熟度が関係することを示唆している。そこで本研究では、果実の成熟度と軟化の難しいの関人に密接な関係があり、ハウス栽培の果実が軟化しやすいことに関して果実の成熟度が関係することを示唆している。そこで本研究では、果実の成熟度と軟化の難しいの関人に密接な関係があり、ハウス栽培の果実が軟化しやすいことに関して果実の成熟度が関係することを示唆している。そこで本研究では、果実の成熟度と軟化の難しいの関人に密接な関係があり、ハウス栽培の果実が軟化しやすいことに関して果実の成熟度が関係することを示唆している。そこで本研究では、果実の成熟度と軟化の難しいの関人に密接な関係があり、ハウス栽培の果実が軟化しやすいことに関
かった（第1表）。
2. 果皮色および果実糖含量の経時的変化
果実の着色開始期はハウス区では8月上旬で、開花後10数日後で着色が見られ（第2図）。また、ハウス区の果実はその後の着色の進行も緩やかであった。開花後130日以降の果実糖含量の変化を調査したところ、園区ともショ糖、ブドウ糖、果糖の順に高かったが、ショ糖含量およびその変化パターンは処理区によって異

Fig.1. Seasonal changes in mean air temperatures throughout fruit growth of 'Maekawa Jiro' persimmon trees grown in the plastic house and the open field. Each plot represents the average temperature for 10 days.

Table 1. Growth stages of fruits in 'Maekawa Jiro' persimmon grown in the plastic house and the open field.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Year</th>
<th>Date of full bloom</th>
<th>Start of coloration</th>
<th>Period of harvesting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plastic house</td>
<td>1999</td>
<td>Mar. 23</td>
<td>Late Jul.</td>
<td>Sep. 6–Oct. 18</td>
</tr>
<tr>
<td>Open field</td>
<td>1999</td>
<td>May 19</td>
<td>Early Sep.</td>
<td>Oct. 25–Dec. 6</td>
</tr>
<tr>
<td></td>
<td>2001</td>
<td>May 21</td>
<td>Middle Sep.</td>
<td>Oct. 30–Nov. 26</td>
</tr>
</tbody>
</table>

*The date at which 80% of flowers were in bloom.

Fig. 2. Seasonal changes in skin color in the apical portion of 'Maekawa Jiro' persimmon fruits during the later stages of fruit development. Fruits were taken from trees grown in the plastic house and the open field in 2001. Vertical bars indicate SE (n=3).

Fig. 3. Seasonal changes in sugar contents of 'Maekawa Jiro' persimmon fruits during the later stages of fruit development. Fruits were taken from trees grown in the plastic house and the open field in 2001. Total sugar content is the sum of sucrose, glucose and fructose contents. Vertical bars indicate SE (n=3).
3. 果皮色と果汁糖度および果肉硬度との関係

成熟初期の果実においては、果頂部のCC値と果底部のそれとの間に高い正の相関関係が認められた（第4図）。
果頂部のCC値が果実について果皮を比較したところ、果頂部のCC値は果頂部のCC値に関係なく、ハウス区が露地区よりも小さく、成熟初期におけるハウス区の果実は、果頂部から果底部にかけての着色の進行が露地区の果実よりも遅いことが示された。

成熟初期の果頂部のCC値と果汁糖度との間に正の相関関係が認められた（第5図）。CC値が低い果実の赤道部と果底部の糖度は、ハウス区が露地区よりも高かった。しかし、果皮の着色が進んだCC値6.5前後の果実では、赤道部や果底部の糖度は処理区間の差が小さく、また、果頂部ではなくのがCC値でも両区の糖度の差は小さかった。しかし、ハウス区では、赤道部や果底部の糖度は果頂部のそれに対してCC値との相関関数が高かった。一方、果頂部CC値と果肉硬度との関係には負の相関関係が認められた（第6図）。CC値の同じ果実についてハウス区と露地区の果肉硬度を比較すると、ハウス区はCC値にかかわらず露地区よりも明らかに果肉硬度が低かった。

成熟中期における果頂部のCC値と果底部のそれとの関係を第7図に示した。図中には、成熟初期の果皮色と比較するため、第4図の成熟初期における回帰直線を表示した。露地区の着色は、成熟初期の果実に比べて急激に進んだ。ただし、果頂部と果底部の着色の進行はほぼ同程度であり、両者のCC値は成熟初期の回帰直線に近い位置に分布した。これに対してハウス区では、果頂部のCC値が6以上の果実は樹上で軟化している場合が多く、これらを調査対象から除外したため、果頂部の着色度は成熟初期のものと相違なかった。しかし、果頂部のCC値は成熟初期の回帰直線よりもかななり上に分布し、2種間の間に果底部の着色が進んだことが示された。一方、ハウス区の果汁糖度は露地区のそれとはほぼ同じであり（第8図）。果肉硬度はハウス区のほうが露地区よりもやや低かった（第9図）。

4. 果実の日持ち性

軟化果実の発生率は、ハウス区では貯蔵3日後に30%を超え、それ以降も増加した（第10図）。露地区では、CC値6の果実では調査期間中には軟化の発生が認められず、CC値7と8の果実では貯蔵日数が進むにつれて軟化する果実が増加した。

考 察

カキのように成熟に伴って果皮が着色する種類の果実
では、着色の進行とともに糖の蓄積などの内因的な変化が起こる。このため、果皮の着色度は、果実の成熟度を評価する指標として用いることが考えられる。

Fig. 6. Relationships between the apical skin color and flesh firmness in the equatorial portion of 'Mackawa Jiro' persimmon fruits at early maturity. Fruits were taken from trees grown in the plastic house and the open field in 2000. ** indicates significance at the 1% level.

Fig. 7. Relationships between the apical and basal skin colors of 'Mackawa Jiro' persimmon fruits at mid-maturity. Fruits were taken from trees grown in the plastic house and the open field in 2000. Regression lines in the graph depicting the relationship between the two parameters at early maturity of fruits are redrawn from Fig. 4.

Fig. 8. Relationships between the apical skin color and soluble solid contents of the juice in the equatorial portion of 'Mackawa Jiro' persimmon fruits at mid-maturity. Fruits were taken from trees grown in the plastic house and the open field in 2000.

Fig. 9. Relationships between the apical skin color and flesh firmness in the equatorial portion of 'Mackawa Jiro' persimmon fruits at mid-maturity. Fruits were taken from trees grown in the plastic house and the open field in 2000.

Fig. 10. Changes in the rate of softening of 'Mackawa Jiro' persimmon during post-harvest storage. Fruits were harvested at mid-maturity from the plastic house and the open field-grown trees in 1999 and stored at ca. 25°C (plastic house) and ca. 15°C (open field), respectively.
価するうえで有効な指標となる。さらに、果皮色がその品種固有の色調であること、ある一定の着色度を示すことが商品価値としての外観品質を決定している。このようなことから、我々の新たな果樹場において果実カラーチャートが作成され（山崎・中村，1980）、また新しい種品については、個別にカラーチャートの開発が行われており（Kondouら，1998）、これらを利用して果実の収穫基準の設定がなされている。

そこで本研究においては、カキ果実の果皮の着色度と糖度および果肉硬度との関係を調査した。その結果、ハウス区と露地区では両者の関係に違いがあり、ハウス区は露地区に比べて、糖度および果肉硬度の割に果皮色が薄いことが明らかとなった。

ハウス栽培における果実の着色度と収穫時期との関係に関して、リンゴ（有村）では、加温栽培によって7月中に収穫された果実は、露地栽培の果実よりも色が濃い傾向が見られ、報告されている（塚原ら，1987a、b）。ブドウにおいても、ハウス栽培によって夏季の気温が最も高くなる前の果实在収穫できるため、露地栽培よりも着色が遅れるとされている（岡本，1996)。また、カキについては、中條（1982）は「富有」を用いて昼夜温差を15-30℃の間で組み合わせて管理を行い、30℃を含む処理区では着色が遅れることを報告している。これらの報告は果実の着色度と気温との間に密接な関係があり、我々の研究の夏の高温は着色に抑制的であることを示唆している。

2001年の調査では、ハウス区の果実は露地のそれよりも、調査後7日で示した着色開始期が遅く、その後の着色の進行も緩やかであった。本研究における3か年の着色開始期は、露地区では昼夜の気温が低く、果実着色度を示すものを含めた9月上旬であったのに対し、ハウス区では昼夜の気温が低く、果実着色度を示すものを含めた9月上旬であり、このように、ハウス区の果実成熟期は着色が不十分な高温度であったため、着色開始後もその後の着色の進行が遅れたものと考えられる。

2000年に、成熟初期と中期の2期に分けて果実を採取し、果頂部CC値と果汁糖度および果肉硬度との関係を調査した。その結果、ハウス区の果実は露地区の果実に比べて、果皮の着色度と果肉硬度が低かったものの糖度は同等以上の値を示した。成熟初期に収穫した果実は果実頂部CC値が5以上であり、甘さを強さの点で十分な食味を有していた。これらの事から、1月上旬に加温を始め、7月中旬-8月上旬に着色が始まるハウス栽培のカキ「前川次郎」は、着色の進行に比べて糖度の上昇および果肉硬度の低下が相対的に早く進むという成熱特性を示すと結論づけられた。このような現象は、果皮の着色が高温によって強く抑制されていることが原因していると考えられる。

調査開始から成熟期までの期間は、露地区の174日に対し、ハウス区では196日であり、ハウス区の方が約2週間長い。ところが、中條（1982）は、カキ「富有」果実の生育日数は、露地栽培よりもハウス栽培の方が短かったと報告している。このような不一致には栽培地の気温の違いが関与している可能性があるが、品種の違いも影響していると考えられ、この点は今後の検討課題である。

ハウス区では、果頂部CC値が6以上になるまで着果させておくと、樹上で軟化する果実が多数発生し、また、CC値6で収穫したハウス区の果実は、25℃で貯蔵すると3日間で軟化する果実が30%以上に達した。播磨ら（2001）は、ハウス栽培の「刀根早生」では成熟期の高温が果実を「軟化しやすい」生理状態にすると述べている。本研究のハウス区においても、着色開始期以降の気温が高く推移しており、ハウス栽培の「刀根早生」の糖度が高くなることで、その生理状態に近いものと考えられる。したがって、収穫果を常温貯蔵する場合、ハウス栽培の「前川次郎」では、果頂部CC値が6で収穫するまでに収穫すべきであると考えられた。

果実へのショ糖の蓄積パターンもハウス区と露地区とで異なり、露地区の果実のショ糖含量は、糖度の進行とともに徐々に増加し、橘ら（1985）が「次郎白」で示した結果と一致した。これに対してハウス区の果実は、ショ糖含量は成熟直前に急激に増加し、露地区の気温が着色開始期以降低下したのに対し、ハウス区のそれは着色開始期以降も高温推移したことから、着色開始期以降の気温の差異がハウス区と露地区の果実のショ糖蓄積パターンに違いをもたらしたと考えられる。

気温と糖代謝の関係についてはいくつかの報告がある。菅名・山田（1988）は、リンゴ果実の品質の栽培地域間差異を全国的な規模で調査し、糖度含量に地域間差異がないが、全糖に占めるショ糖の割合は冷涼な地域ほど高まりを示すことを明らかにしている。また、山口ら（1988）は、樹に着生しているリンゴ果実の周囲温度と果実の糖代謝との関係について調査し、果実温度が低いほどショ糖の割合が高まることが明らかにしている。ウメ・リンゴ・カシノ・ナシ・ブドウも近接した果実の報告が報告されている（小林ら，1994）。本研究では、ハウス区果実のショ糖含量が急激に増加し最終的に7月下旬の平均気温は３か年とも約25℃で収穫され、これらを総合的に考えると、平均気温が25℃を超えるような高温は、果皮果実のショ糖蓄積に対する抑制的を作用する可能性があるが、この点についてはさらに検討する必要がある。

結 論

ハウス栽培のカキ「前川次郎」における果実の成熟特性を明らかにするため、1999-2001年にわたって果皮の着色、果実糖度および果肉硬度を露地栽培の果実と比較した。ハウス区では、1月上旬にビルフィルムを覆被し暖房で加温を開始し、6月上旬-7月上旬にビルフィルム覆被を除去した。生育期間中の平均気温は、調査開始から調査120日以降はハウス区が露地区より
も高かった。ハウス区における着色開始期は浸漬後130
日頃で露地区よりも20日ほど遅く、その後の着色の進行
も露地区よりも緩やかであった。果実のショ糖含量は、露
地区では着色の進行とともに徐々に増加したが、ハウス
区では浸漬後180日目まではほとんど増加せず、成熟直前
になって急速に増加した。ハウス区の果実は、成熟期に
おける果皮の着色度が露地区よりも低かった。これは果
皮の着色期が浸漬後にハウス栽培では、高温によっ
て着色の進行が抑制されると考えられた。しかし、ハ
ウス区の果実は、糖度や硬度の点では露地区の果実と同
等またはそれ以上に成熟が進んでいた。以上の結果、ハ
ウス栽培されたカリ「前川次郎」の果実は、露地栽培のもの
に比べて果皮色が薄いが糖度が高く、果肉硬度が高い特
性を有することから、その収穫適期は、果頂部の果皮の
着色度がカラーチャート値で5〜6になった時点と考えら
れた。

謝辞 本稿の御校閲を賜った東京大学名誉教授 原司博士に対し、深謝の意を表します。

引用文献
中條利明. 1982. 富有カキ果実の発育ならびに品質に関
する温湿条件に関する研究。香川大紀要。37:1-63.
Fumuro, M. and N. Utsumoniya. 1999. Shoot growth and
fruit development as affected by warming the soil in
forcing culture of 'Tonezawa' persimmon under re-
1148.
播磨真志・中野龍平・山本貞男・小松英雄・藤本欣次・北野欣
信・久保隆禅・福留明昭・豊栄・里美. 2001. カキ「刀根早
生」の促進栽培果実の収穫後の軟化発生. 園学雑. 70:
251-257.
今岡・小豆沢秀. 1992. カキ「西条」のハウス栽培におけ
る生育特性. 園学雑. 61 (2): 132-133.
板村裕之. 1986. 成熟段階の異なるカキ「平均株」果実のア
ルール軟化に伴う軟化と呼吸及びエチレン生成量の
関係. 園学雑. 55: 89-98.
板村裕之・谷川・藤本欣次・山本貞男・山本・弘. 1996.
カキ「刀根早生」の促進栽培果実の軟化とエチレン生成と
の関係. 園学雑. 65 (1): 74-75.
松村樹行・新川・松村・松村耕一・安田・武. 1994. ハウス栽
培におけるカキ「西村早生」の生育特性. 第3報. 地温制
御による肥大促進・果実向上効果. 園学雑. 63 (2):
70-71.
持田圭介・山本孝司. 2000. 加温ハウス栽培カキ「西条」にお
けるエチレノールの抑制果実の促進効果. 園学雑. 69 (別
2): 309.
森永邦久・篠原定博. 1994. 夏秋季の高温果実の栽培と品質
ならびに各器官の呼吸に及ぼす影響. 園学雑. 63 (別
2): 72-73.
新川・松村樹行. 1992. ハウス栽培におけるカキ「西村
早生」の生育特性. 第1報. 生育特性和二段枝長枝に
おける開花. 園学雑. 61 (別1): 112-113.
東京.
平・智・板村裕之. 1989. 山形県庄内地方における近5
年間のカキ「平均株」果実の発育および成熟の相関に
高木敏彦・関井啓秀・市川善之. 1994. ウンシュウウ
ミカンの着色に及ぼす温度と果実の糖度の影響. 園学
雑. 62: 725-731.
高野隆峰. 1967. カキ及びトマト果実の生育ならびに成熟に
伴う呼吸量の変化. 園学雑. 36: 358-362.
高田隆峰. 1982. 発育ステージの異なるカキ果実の呼吸、エ
チレン生成及び成熟に対するエチレン処理の影響. 園学
雑. 51: 203-209.
吉倉・山田・寿. 1988. 栽培地を異にしたリンゴ果実の
品質と気温との関係. 園学雑. 56: 391-397.
塙田・吉沢しげの・小林隆. 1987a. リンゴのハウス栽
培による収穫期の前進と果実品質の向上. 園学雑.
56: 160-161.
昭62春: 158-159.
塙田・吉沢しげの・小林隆. 1987b. リンゴのハウス栽
培による収穫期の前進と果実品質の向上. 園学雑.
57: 173-177.
山崎利枝・久木栄. 1980. 果実の成熟度判定のためのカ
ラーチャートの作成とその利用に関する研究. 第1報. カ
ラーチャートの特性. 果樹試報. A17: 19-44.
鄭・国際・杉浦・明・苦名・孝. 1995. カキ果実の発育なら
びに成熟に伴う糖組成の変化. 園学要旨. 昭60春: 124-
125.
鄭・国際・平・智・米嘉教・杉浦・明. 1990. 温度条件の
異なる地域におけるカキ果実の発育および成熟度相の相
鄭・葛原・安田・平野・健・杉浦・明. 1988. 果実温度が
カキ「平均株」果実の成熟に及ぼす影響. 園学要旨. 昭
63春: 106-107.