土壌湿度が葡萄の葉の同化作用と枝梢の伸長作用に及ぼす影響

小林章
（京都大学農学部）

1．緒言

筆者は、自然環境下に於ける葡萄の葉の同化作用と各種栽培要因との関係を調査中（小林1938, 1939, 1941, 1942, 1943, 1944）であるが、此の度はその一部として、首題の件を観察した。従来、本邦に於ても土壌水分と果樹の枝梢の伸長、或は果実の肥大との関係を究めた実験成績は相当に（佐藤1931, 安藤, 岩垣1936, 三輪1937, 1946, 藤田1940等）あるが、土壌の性質（容水量, 水分含量, 疫調係数）を吟味して行ったものは皆無と称してよい（寺見1946）。且つ、土壌水分の栄養が枝梢の伸長や果実の肥大に著しい影響を與へる紛に、それ以前に於て、少くともこれ等の器官の成長と密接な関係にある葉の同化・呼吸、或は蒸散の諸作用等に異状が生じてある等である。葡萄に就いての此等の関係を明白にする目的で當実験に着手した。昭和18年6～8月、京都大学の京都農場で、壊土（容水量46.6%、水分含量16.3%, 疫調係数8.82%）を用いた素焼鉢（30cm×30cm）に植えた2年生葡萄（Muscat of Alexandria）を用ひ次の諸点を観察した。

I. 土壌湿度と同化作用との関係
 A．土壌の自然乾燥に伴う同化作用の変化
 B．種々の土壌湿度に於ける同化作用の日変化
 C．灌水時期と同化作用の日変化

II. 土壌湿度と枝梢の伸長作用との関係

同化量の測定にはGANONGのPunch-method（小林1938）を用ひた。土壌湿度の測定には材料を鉄の深さ15cm（中央）の點より求めて105～110℃で48時間乾燥後、乾燥重量で表示した。

2．実験結果

I. 土壌湿度と同化作用との関係

A．土壌の自然乾燥に伴う同化作用の変化

便に、樹勢の相違した個体を選び、硝子管内に保入し置き、次の3区に分けて7月9～15日及び8月9～15日の2回に互に上記の事項を観察した。

 (i) 標準区（毎日灌水区）：前日の午後6時に毎日十分に灌水して置く。
 (ii) 浴水区：灌水を含む中へ素焼鉢をもろ共に根部を浸水して置く。
 (iii) 乾燥区：
 a) 断水後2～3日で灌水する。
 b) 断水後3～4日で灌水する。

その結果は、第1, 2表及び第1, 2図の通りである。
第1表 土壤の自然乾燥に伴って越る同化作用の変化（断水期間 2～3 日間）

<table>
<thead>
<tr>
<th>灌水区</th>
<th>浸水区</th>
<th>乾燥区（A）</th>
<th>乾燥区（B）</th>
<th>気象条件</th>
</tr>
</thead>
<tbody>
<tr>
<td>土壤温度</td>
<td>同化量</td>
<td>土壤温度</td>
<td>同化量</td>
<td>土壤温度</td>
</tr>
<tr>
<td>7月9日</td>
<td>38.9〜25.1</td>
<td>(g)</td>
<td>39.1〜26.2</td>
<td>(g)</td>
</tr>
<tr>
<td>10日</td>
<td>5.30</td>
<td>”</td>
<td>5.75</td>
<td>23.6〜18.1</td>
</tr>
<tr>
<td>11日</td>
<td>5.30</td>
<td>”</td>
<td>6.65</td>
<td>17.2〜13.1</td>
</tr>
<tr>
<td>12日</td>
<td>5.35</td>
<td>”</td>
<td>5.60</td>
<td>39.0〜26.1</td>
</tr>
<tr>
<td>13日</td>
<td>6.25</td>
<td>”</td>
<td>6.15</td>
<td>5.00</td>
</tr>
<tr>
<td>14日</td>
<td>5.70</td>
<td>”</td>
<td>5.15</td>
<td>4.45</td>
</tr>
<tr>
<td>15日</td>
<td>5.65</td>
<td>”</td>
<td>5.10</td>
<td>4.14</td>
</tr>
</tbody>
</table>

注 ① 同化量は葉面積 m² 畠に換算 供試数の m² 畠重量 40〜60 gr.
② 乾燥区は 7月9日午前6時より断水し、（A）区は11日午前6時 （B）区は12日午前6時に再び灌水実施

第2表 土壤の自然乾燥に伴って越る同化作用の変化（断水期間 3〜4 日間）

<table>
<thead>
<tr>
<th>灌水区</th>
<th>浸水区</th>
<th>乾燥区（A）</th>
<th>乾燥区（B）</th>
<th>気象条件</th>
</tr>
</thead>
<tbody>
<tr>
<td>土壤温度</td>
<td>同化量</td>
<td>土壤温度</td>
<td>同化量</td>
<td>土壤温度</td>
</tr>
<tr>
<td>8月9日</td>
<td>36.9〜23.2</td>
<td>(g)</td>
<td>35.9〜22.9</td>
<td>(g)</td>
</tr>
<tr>
<td>10日</td>
<td>3.75</td>
<td>”</td>
<td>4.60</td>
<td>20.6〜17.2</td>
</tr>
<tr>
<td>11日</td>
<td>3.30</td>
<td>”</td>
<td>4.00</td>
<td>15.9〜12.4</td>
</tr>
<tr>
<td>12日</td>
<td>1.45</td>
<td>”</td>
<td>2.50</td>
<td>11.8〜10.9</td>
</tr>
<tr>
<td>13日</td>
<td>4.65</td>
<td>”</td>
<td>4.60</td>
<td>36.1〜22.5</td>
</tr>
<tr>
<td>14日</td>
<td>4.60</td>
<td>”</td>
<td>4.35</td>
<td>4.25</td>
</tr>
<tr>
<td>15日</td>
<td>1.95</td>
<td>”</td>
<td>1.75</td>
<td>1.15</td>
</tr>
</tbody>
</table>

注 ① 第1表と同じ ② 乾燥区は8月9日午前6時より断水し、（A）区は12日午前6時に（B）区は13日午前6時に再び灌水実施

即ち、浸水区は浸水後 1〜3 日間は、標準区（毎日夕方灌水区）に比し著しく同化量を増大したが、5〜6 日と時が経つと即て同化量は減退し、10日後には同化作用の測定を行わなかったが、葉色は衰へ落葉するもを認めた。乾燥区は、断水後第1日目に於て既に土壤温度の低下（23.0〜17.5%）に伴う同化量は著しく減少し、第2日目には土壤温度が更に低下し（18.0〜13.0%）となり水分応答の役が生じたが、その際の同化量は補償点（compensation point）以上であった。長期して第3日目には、土壤温度はして僅かしか変化せず（13.0〜11.0%）、同化量は変動補償点以下であった。これ等の関係を総合すると第3表の如くになる。
即ち、土壌湿度が、水分含量より稍高い程度に低下すると、同化機能は相當然阻害され始め、更に低下し水分含量前後になるとき、もはや同化機能は変質点以下の値としか示さない。

次に、断水後、再び灌水を実施し、その時の同化作用の同化状態を観たのち、断水期間が1日の場合には、灌水後1晩で殆ど常態に回复した（第1実験A区）が、断水期間が永くなるに従い同化は長時間に要した。併も、土壌湿度が萎縮係数（8.82％）近くに下げた時には、同化作用の同化は逐々容易でなかった（第2実験B区）。尚、土壌湿度が低下しても、昼夜で空気温度が大なる時には著の影響が比較的緩和される様である（第二実験断水第3日目）。

第1図 土壌の自然乾燥に伴う同化量の変化（図上の数字は土壌湿度）

第2図 土壌の自然乾燥に伴う同化量の変化（図上の数字は土壌湿度）

水分含量 16.3％ 委縮係数 8.8％

第3表 土壌湿度（対乾燥重％）と同化量との関係

<table>
<thead>
<tr>
<th>実験</th>
<th>第1</th>
<th>実験</th>
<th>第2</th>
</tr>
</thead>
<tbody>
<tr>
<td>土壌湿度</td>
<td>同化量</td>
<td>土壌湿度</td>
<td>同化量</td>
</tr>
<tr>
<td>39.6〜24.5％</td>
<td>4.96〜4.30(g)</td>
<td>37.1〜21.8％</td>
<td>4.15〜3.25(g)</td>
</tr>
<tr>
<td>23.6〜18.9</td>
<td>2.45〜1.50</td>
<td>22.3〜17.2</td>
<td>1.00〜0.95</td>
</tr>
<tr>
<td>18.0〜13.1</td>
<td>(一)0.60〜(一)0.90</td>
<td>16.8〜12.4</td>
<td>(一)0.60〜(一)1.05</td>
</tr>
<tr>
<td>12.6〜11.2</td>
<td>(一)0.65</td>
<td>11.9〜10.0</td>
<td>0.00〜(一)0.25</td>
</tr>
<tr>
<td>〜</td>
<td>〜</td>
<td>10.5〜9.9</td>
<td>(一)1.00</td>
</tr>
</tbody>
</table>

注： 土壌容水量 46.6％ 水分含量 16.3％ 委縮係数 8.82％

B. 種々の土壌湿度に於ける同化作用の日変化

豫め、断水処理に依て、土壌湿度を種々の程度に調節した数区を設けて置き、その間の
同化作用の日変化の状態を比較観察した。その結果の代表的な場合を述べると、第4表、第3図の如くである。

第4表 土壌温度と同化作用の日変化の関係
(July 27，晴，最高気温 31.8°C，湿度 74%)

<table>
<thead>
<tr>
<th>検定期間</th>
<th>清水区(46.6% 以上)</th>
<th>38.6〜22.9%</th>
<th>22.7〜18.2%</th>
<th>18.6〜13.2%</th>
<th>12.9〜10.8%</th>
</tr>
</thead>
<tbody>
<tr>
<td>7 A.M〜10 A.M.</td>
<td>2.8</td>
<td>(g)</td>
<td>2.6</td>
<td>(g)</td>
<td>2.0</td>
</tr>
<tr>
<td>10 A.M〜1 P.M.</td>
<td>2.4</td>
<td>2.1</td>
<td>0.8</td>
<td>0.0</td>
<td>-0.8</td>
</tr>
<tr>
<td>1 P.M〜4 P.M.</td>
<td>1.5</td>
<td>1.3</td>
<td>-0.9</td>
<td>-1.1</td>
<td>-0.9</td>
</tr>
<tr>
<td>7 A.M〜4 P.M.</td>
<td>+6.7</td>
<td>+6.9</td>
<td>+2.4</td>
<td>+0.9</td>
<td>-0.5</td>
</tr>
</tbody>
</table>

即ち、清水区（土壌温度 46.6%以上）と清す区（土壌温度 38.6〜22.9%）との間には殆んど差異がないが、土壌温度が 22% 以下になると同化作用は著しく抑制され、更に水分豊か（16.3%）前後になると一日（午前 7 時〜午後 4 時）の同化総量に於て補給分前後の同化を全くに過ぎない。但し、午前 7 時〜10 時の間は未だ葉内に水分が比較的充分に保持され、且つ補給され得る可能性がある故にか、土壌温度が相当に低い区でも、同化量は相当の値を示した。が、それ以後の時刻では乾燥区（土壌温度 22% 以下）の区は殆んと同化機能を失った。同様であった。

第3図 土壌温度と果の葉の同化作用の日変化
(July 27，晴，最高気温 31.8°C，湿度 74%)

向、この場合に参考のために、各區に就いて、葉の一定面積（m²）當の含水重量並に含水分合（％）を調査してみた。その結果は第5表の如くである。

第5表 葉内含水重量並に含水分合の日変化

<table>
<thead>
<tr>
<th>検査区 (土壌温度)</th>
<th>清水区 (46.6% 以上)</th>
<th>清す区 (38.6〜22.9%)</th>
<th>乾燥区 (18.6〜13.2%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>含水量 (g)</td>
<td>含水 %</td>
<td>含水量 (g)</td>
<td>含水 %</td>
</tr>
<tr>
<td>7 A.M.</td>
<td>139</td>
<td>74.7</td>
<td>122</td>
</tr>
<tr>
<td>10 A.M.</td>
<td>135</td>
<td>72.9</td>
<td>119</td>
</tr>
<tr>
<td>1 P.M.</td>
<td>130</td>
<td>71.5</td>
<td>114</td>
</tr>
<tr>
<td>4 P.M.</td>
<td>136</td>
<td>71.5</td>
<td>123</td>
</tr>
</tbody>
</table>

注：含水量は葉面積 1 平方米の値です
即ち、葉の一定面積（m²）当りの絶対含水量は浸水区（土壌温度 46.6％以上）が最も多く、次いで浸水区（土壌温度 38.6～22.9％）及び乾燥区（土壌温度 18.6～13.2％）の順位となり、葉内含水量の多少と同化作用の強弱とは相関していた。換言すれば、葉内の含水量が十分であれば、それに応じて同化作用も活発であつた。併せて、葉組織の健全な発育、即ちその充実程度を知るために、午後4時における葉の全重量に対する含水量の比を算出してみると、含水量並に同化率の適度な灌水区が葉内の含水量に於て最も低く、結局、適度の灌水が最も充実した成長を促す様である。

C. 灌水時刻が同化作用の日変化に及ぼす影響

断水状態で1〜2日間経過した個体、即ち、土壌温度が23％及17％前後に低下してある2区に就いて、次の様な方法で灌水を实施し、各灌水区に於ける同化機能の日変化状態を比較観察した。

a. 前日の午後6時に灌水をして置いていた場合。
b. 當日の午前6時に灌水をした場合。

第6表 乾燥土壌への灌水時刻が同化作用の日変化に及ぼす影響

<p>| | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>前夜灌水</td>
<td>當日朝灌水</td>
<td>當日正午灌水</td>
<td>前夜灌水</td>
<td>當日朝灌水</td>
<td>當日正午灌水</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 A.M.-10 A.M.</td>
<td>(g)</td>
<td>(g)</td>
<td>(g)</td>
<td>(g)</td>
<td>(g)</td>
<td>(g)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 A.M.-2 P.M.</td>
<td>3.0</td>
<td>3.1</td>
<td>2.6</td>
<td>2.6</td>
<td>1.3</td>
<td>0.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 P.M.-6 A.M.</td>
<td>2.5</td>
<td>2.3</td>
<td>1.5</td>
<td>2.4</td>
<td>0.7</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 A.M.-6 P.M.</td>
<td>1.1</td>
<td>1.2</td>
<td>0.2</td>
<td>1.2</td>
<td>0.4</td>
<td>-0.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6.6</td>
<td>6.6</td>
<td>4.8</td>
<td>6.2</td>
<td>2.4</td>
<td>-0.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

注: i) 調査期日 6月14日晴、最高気温34.9℃、湿度89%
 ii) 土壌含水量46.6％、水分含念16.3％、葉面係数8.8％
 iii) 同化量は葉面積 m² 当りの値です

実験結果は第6表第4図の如くである。即ち、土壌温度23.6％区（断水期間1日）では、前日の夕方に灌水をした場合、当日の朝早くに灌水をした場合との間には同化量に於て殆ど差違がなく、その後の正午に灌水をした場合だが、前二者に比し僅かに同化量が少ない。併し、土壌温度17.5％区（断水期間2日）、前日の夕方に十分に灌水を
小林：土壌温度が葡萄の葉の同化作用とも枝梢の伸長作用に及ぼす影響

したがって、特別の早朝や正午の灌水では同化機能も著しく低下して、土壌水分の缺乏に因む顕著な樹影響が現れた。

これは当然、前述の調査に依っても明らかに如く、実験に使用した土壌（壊土、容水量46.6%、水分貯蔵数16.3%，萎凋係数8.82%）では、葡萄樹は土壌温度が23〜18%前後になると、その葉の同化作用が抑制され始め、次いで18〜13%前後になると補償点（compensation point）以下の同化をしか行えない。且つ、葡萄樹に対し、一日の中での同化の最適時は、筆者の調査（小林1938）に依ると、通常午前7〜10時の間に、この時刻に植物体内の水分と徐が潮に行われないと、同化作用が活潑に替わわれる結果となる。

従って、葡萄の栽培を養成する場合、特に暗子室栽培用の栽培苗を鉢植で養成する時に、夏季高温で蒸散量が多くて土壌水分の缺乏が速やかな時には、この土壌温度の変化と灌水時期との関係を十分に考慮を拝し、管理を行うべきである。但し、草花類の温室栽培では、夜方に灌水をすると夜間に枝梢の伸長を著す傾向があるとして、成る可く去を遮けてある様である。併し、これよりも栽培対象である植物の種類如何の問題であって、前述（第5表）の如く、適宜な時刻に灌水をすれば、個別植物体内の絶対水分量が大となっても、そのために却って同化作用が活潑となり炭水化物の集積が大となる結果、却て含水步合（%）は低くなり強健な植物体が出来ることになる。

II. 土壌温度と枝梢の伸長作用との関係

土壌の自然乾燥に伴って起こる同化作用の変化を観察した時に（第1表）枝梢の伸長量の変化をも同時に観察した。その結果は第7表、第5図の如くである。

第7表 土壌の自然乾燥に伴って起こる枝梢の伸長量の変化

<table>
<thead>
<tr>
<th>日付</th>
<th>湿潤区</th>
<th>乾燥区(A)</th>
<th>乾燥区(B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7月8日</td>
<td>38.9〜25.1%</td>
<td>39.6〜25.3%</td>
<td>36.6〜24.9%</td>
</tr>
<tr>
<td>15日</td>
<td>2.0 (cm)</td>
<td>1.8 (cm)</td>
<td>2.2 (cm)</td>
</tr>
<tr>
<td>9日</td>
<td>2.5</td>
<td>2.0</td>
<td>2.7</td>
</tr>
<tr>
<td>10日</td>
<td>3.1 (断水)</td>
<td>0.4 (断水)</td>
<td>0.8</td>
</tr>
<tr>
<td>11日</td>
<td>2.4 (17〜23.1)</td>
<td>0.0 (18.0〜14)</td>
<td>0.2</td>
</tr>
<tr>
<td>12日</td>
<td>1.7 (断水)</td>
<td>0.7 (12.6〜11.2)</td>
<td>0.0</td>
</tr>
<tr>
<td>13日</td>
<td>2.6 (19.0〜25.6)</td>
<td>0.8 (19.1)</td>
<td>0.2</td>
</tr>
</tbody>
</table>

注: 乾燥区は7月9日午後6時より断水し、(A)区は11日午後6時、(B)区は12日午後6時より灌水を再開

即ち、土壌温度が23.0〜18.0%になると、枝梢の伸長は著しく阻害され、更に18.0〜13.0%に低下水分貯蔵(16.3%)前後にすると完全に伸長が停止するか、或は殆ど同様な状態になった。更に、第2表の乾燥区(B)の如く、土壌温度が低下し11.0%前後になり
3. 考察

土壌湿度が同化作用に及ぼす影響を観察したものとしては、Magness, Regimbal and Degman (1932) が木の枝葉に就て、土壌水分の不足は炭水化物の集積を妨げることを報告してゐる。Hennicke and Childers (1936) は、容器に植えた木の炭素同化作用が、土壌の自然乾燥に伴て低下することを観た。沢崎氏 (1939) は、園場並に鉢植の稲穂に就き、無灌水区 (土壌湿度 16～14%) と灌水区 (土壌湿度 21%) に比し、同化量が著しく劣るものを認めた。併し、これ等の実験は、土壌の土壤、特に水分保有力に就ては無関心に取扱われてゐる。其の後、Schneider and Childers (1941) は、湿粘土壌（水分當量 36.4%, 壓調係数 15.2%）に植えた木の就き観察した。その結果に依ると土壌湿度が園場客水量（field capacity）より少し減少した際には、同化作用が一時消失となるが、共後は土壌水分の減少と共に次第に著しく、壓調係数に略等しくなると、同化作用は著しく低下し、その場合には灌水しても園場には 2～7 日を要した。

其他、土壌の性質を吟味し、土壌水分と生長現象との関係を究めたもんを挙げてゐる。Wadsworth (1934) は甘蔗に就き、その生長の停止點は土壌のモリール係数と一致し、それ以上にあれば余水分の多少に無関係に一定であることを述べた。併し、Rogers (1935) は苹果の根に就き、Hecke (1934) は甘蔗の枝葉に就き、各々その生長の停止点を土壌の壓調現象より通かに述べた。即ち、水分當量より稍高い一點（毛管圧力計の示度 45° 曲及べ 25～40° 曲）に認めた。玉井氏 (1943) は、煙草を材料として、砂土及び粘土に就き同様の調査を行った。それに依ると、水分當量またはそれよりも稍高き點で枝葉の抑制が始まり、水分當量と壓調係数との中間又は水分當量と同様の點で生長が停止した。
同化機能及び枝葉の発育と密接な関係にある果実の成長に関しては、Veihmeyer and Hendrickson (1927, 1929, 1931) が、枝及び果葉に就き、土壌水分が永久萎調係数と最大容水量との間であれば、その量の多少に拘らず同一程度に有効なることを明示した。併し、これに附し、Furr and Degman (1931) は、果葉に就き、萎調係数より数倍高い臨に於ける土壌湿度の相違も果実の成長に差異を現わすことを指摘した。同様に Magness (1934), Lewis, Work and Aldrich (1935) 等は果葉、枝葉等に就き観察を行い、果葉は土壌水分がその土壌の永久萎調点よりも適当に高い場合は、含水量の相違が収量に影響を与えることを認めた。更に、寺見博士 (1946) は、1934-35 年に米国加利州に、桃を用ひ大規模の実験をされ、土壌水分が水分貯量附近以下では、収量が著しく減収することを確認された。

此度、筆者が葡萄に就き、土壌湿度が葉の同化作用並に枝葉の伸長作用に及ぼす影響を観察した結果に於て、葉の伸長作用は水分貯量より高き點で抑制され始め、水分貯量附近に於て枝葉の同化作用に於て、且つ同化作用は萎調点（呼吸作用と同様の定義）以下の値を示した。即ち、萎調係数よりも適当に高い土壌含水量に於て、生理作用は異常を呈した。

以上の 2 點を総合するとき、一般蔬菜植物、特に落葉種帯果樹にあつては、葉の同化作用、枝葉の伸長作用、或は果葉の成長作用のいずれの点より観察するに、土壌の含水量が水分貯量附近に於て少し下がることが、栽培上遠く安全なることであり、況んと灌漑時期の基準を枝葉の萎調現象に求めることは、栽培生理上不合理も著しい様である。

4. 摘 要

1. 壇土（容水量 46.6%, 水分貯量 16.3%, 萎調係数 8.82%）を充した蓄積鉢に植えた 2 年生の Muscat of Alexandria を用ひ、土壌湿度（乾物重量 %）と同化作用並に枝葉の伸長作用との関係を観察した。

2. 土壌湿度が 39.0~23.0%（容水量の 84~49%）では、葉の同化作用並に枝葉の伸長作用は最も正常であった。併し、23.0~18.0%（容水量の 49~39%）では同化作用は著しく抑制され、18.0~13.0%（容水量の 39~28%）即ち、水分貯量附近では、枝葉の伸長作は停止し、同化作用は萎調点以下の値を示した。更に低き、11.0% 前後（永久萎調係数 8.82% に近し）では一部の葉は日中一時的に軽度萎調状態を呈した。

3. 土壌湿度が 23.0%（容水量の 49%）程度の乾燥状態であれば、前日の欠水に灌漑をしても、枝は前日の早朝に灌漑を行っても、両者の一日の同化量では相違がないが、昼間正午の灌漑では同化量が前二者に比し著しく低下した。併し、土壌湿度が 17.0% 程度（容水量の 36%）即ち、水分貯量附近に於ては、前日の欠水に灌漑をして置かないと、水分の収支に因る同化作用の低下が著しく、前日早朝にいくら多量に灌漑をしても、その效果は微弱であった。

5. 引 用 文 献

(1) 安藤茂夫・岩垣健夫：農業化学，11：2609, 12：2853 (1936)
(3) 延田克治：たけびん 5 (8) : 2 (1940) 三輪氏論文引用
(8) 岩崎英雄：柑橘研究 9: 49 (1959)
(9) 小林 韋：園藝學會雑誌 9: 43 (1938), 10: 27 (1939), 12: 305 (1941), 13: 62 (1942),
14: 222 (1943), 15: 41 (1944)
29: 245 (1932), 32: 151 (1934)
(12) 三輪忠三：京都帝大農場果報 1: 112 (1937), 園藝學研究雑誌 3: 82 (1946)
(13) 佐藤敏夫：農業及園藝 6: 70 (1931)
(14) SCHNEIDER G. W. and CHILDERS, N. F.: Plant Physiology 16: 565 (1941)
(15) 王井虎太郎・岩崎 英：農業及園藝 18: 155 (1943)
(16) 岩崎英雄：園藝學研究雑誌 3: 98 (1936)
(18) WADSWORTH, H. A.: Hawaiian Planters Record 38 (1934) 玉井氏論文引用