Identification of the Main Agent Causing Yellow Color of Yellow-Flowered Cyclamen Mutant

Ikuo Miyajima¹, Toshiya Maehara¹, Tetsuro Kage² and Kunimitsu Fujieda¹

¹ Laboratory of Horticultural Science, Faculty of Agriculture, Kyushu University, Fukuoka 812
² Kage Shinkoen Nursery, Tsunemochi, Ohashi, Kurume 839-11

Summary

The principal yellow pigment in petals of yellow-flowered cyclamen found in the inbred line of diploid cultivar of white-flowered cyclamen was isolated and identified chromatographically and spectrophotometrically as chalcononaringenin-2'-glucoside (isosalipurposide). This mutant clone seems to lack the same recessive enzyme chalcone-flavanone isomerase as the mutant of Callistephus chinensis. The prospects on the breeding for deep yellow-colored cyclamen are discussed.

Introduction

Flower colors of cyclamen have been restricted to red, pink, white, reddish-purple, and purple; therefore, a yellow- or blue-flowered cyclamen has been sought for a long time.

In 1982, the authors found a yellow-flowered individual in an inbred population of a diploid, white-flowered cyclamen 'Pure White Kage'. We have maintained this line by selfing and intrapopulational-crossing. Although the color of this flower is deep yellow at bud stage, it becomes paler after anthesis (Fig. 1). Anthocyanins and flavonols have been associated with flower pigments of cyclamen (5, 7, 8, 9, 10, 11, 12, 13), but a yellow pigment has never been reported. It seems, therefore, that our plant is a very valuable as a germplasm source for the breeding of new colored cyclamen cultivars.

In this study, the main agent of the yellow-flowered cyclamen was isolated and identified chromatographically and spectrophotometrically. Furthermore, the mechanism of occurrence of new yellow pigment was made clear and the prospects for breeding the deep yellow-flowered cyclamen are discussed.

Materials and Methods

1. Thin layer chromatography of crude extract

Fresh petals were homogenized in 80% ethanol and the homogenate filtered. The filtrate was evaporated to almost dryness under reduced pressure at 35°C, dissolved in small amounts of distilled water, and held on Sep-Pak cartridge (C_{18}, Waters). The flavonoid pigments on the cartridge were washed sufficiently with distilled water to eliminate the water-soluble, hydrophilic contaminants and eluted with 2ml of ethanol. The concentrated ethanol eluate was then applied to a 20 × 20 cm glass plate coated with micro-crystalline cellulose powder and developed two-dimensionally in the following solvent systems: n-butanol-acetic acid-water (4 : 1 : 5, v/v/v, upper phase) for the first dimension, and 30% acetic acid for the second. After development, color properties of each colored spot were recorded under visible and UV light
directly or after the treatment with ammonia, 5% ethanolic aluminum chloride, or 5% aqueous sodium carbonate.

2. Purification of the relevant pigment and its chromatographic and spectrophotometric characterization

To characterize the relevant pigment further, ethanol extract was purified successively by preparative paper chromatography using a 60 × 60 cm filter paper (No.526, Toyo) in two solvent systems: n-butanol-acetic acid-water (4:1:5, v/v/v, upper phase) and 30% acetic acid. After each development, the pigment band was marked under UV light, cut out, and then eluted with 80% ethanol. The eluate obtained was concentrated under reduced pressure and used for identification.

For the identification of the aglycone, a small portion of the purified pigment was hydrolyzed for 90 min at 100°C with 2 ml of 2N hydrochloric acid. The hydrolysate obtained was analyzed with some authentic specimens by HPLC, in which chromatograms were developed with a LC-6A pump (Shimadzu) equipped with a 4.6 mm I.D. × 250 mm Cosmosil 5C18 column (Nakarai Tesque) and a SPD-6AV detector (Shimadzu) set at 290 nm. A flow rate of 1.0 ml/min was maintained and a mixture of acetonitrile-0.1 M acetic acid (30:70, v/v) was employed as the eluant.

For the identification of the sugar, the acid hydrolysate was neutralized with 1N sodium hydroxide, and the sodium chloride produced was eliminated through ion exchange resin. The residual sugar solution was evaporated to dryness, redissolved in ethanol, and co-chromatographed with authentic sugars using ethyl acetate-pyridine-acetic acid-water (5:5:1:2, v/v) as the solvent system. The color of the sugar spots on the chromatogram was developed by the method of Bryson and Mitchell (1).

Another portion of purified sample was used for the characterization of the nature of glycosides using HPLC. The analytical condition of HPLC system was the same as mentioned above, except that the wavelength was set at 369 nm and the column was eluted with acetonitrile-0.1 M acetic acid (25:75, v/v).

To confirm the glycoside further, the purified sample was co-chromatographed with authentic chalcone glycoside isolated from petals of yellow carnation (14) on the cellulose TLC-plate in four solvent systems: n-butanol-acetic acid-water (4:1:5, v/v/v, upper phase), 30% acetic acid, water, and phenol saturated with water. The absorption spectra in 95% ethanol and the bathochromic shift in an alkaline 95% ethanolic solution of a purified sample and those of authentic specimens were measured spectrophotometrically (Beckman model DU-65) and compared.

3. Comparison of the constitutions of flavonol aglycone in petals of yellow-flowered and white-flowered cyclamen

Ten mg of each lyophilized petals of yellow- and white-flowered cyclamen were soaked in 2 ml of 2 N hydrochloric acid and hydrolyzed for 90 min at 100°C. The acid hydrolysates were passed through the membrane filter and applied to Sep-Pak C_{18} cartridge. The aglycones trapped on the cartridge were washed with 10 ml of water to eliminate any water soluble contaminants and then eluted with 2 ml of ethanol. Five μl of each sample were injected to HPLC. The conditions of HPLC were the same as described in the method of identification of aglycone, except that the wavelength was set at 360 nm.

Fig. 2. Two dimensional thin-layer chromatogram of an ethanol extract from petals of yellow-flowered cyclamen. n-BAW: n-butanol-acetic acid-water. See Table 1 for the pigment properties of the numbered spots.
Results and Discussion

A two-dimensional TLC-plate of the crude extract disclosed 24 distinct spots (Fig. 2); their color properties are shown in Table 1. Spots 2, 3, 10 and 17 were visible under white light without treatment with any color developing reagents. Spot 2, the major pigment, had color properties when sprayed with three reagents, which suggested that it might be a chalcone (2). Therefore, further characterization of this spot was done after its purification by successive preparative paper chromatographies.

It was reported that chalcone was isomerized readily to a flavanone by acid treatment (3). Therefore, in this study, three kinds of authentic flavanone, naringenin, hesperetin and dihydro-quercetin were used for co-chromatography. Upon acid hydrolysis the resulting aglycone was identified as naringenin (Fig. 3). Accordingly, spot 2 was deter-

<table>
<thead>
<tr>
<th>Spot no.</th>
<th>None</th>
<th>+NH₃</th>
<th>+AlCl₃</th>
<th>+Na₂CO₃</th>
</tr>
</thead>
<tbody>
<tr>
<td>VIS.</td>
<td>UV.</td>
<td>VIS.</td>
<td>UV.</td>
<td>VIS.</td>
</tr>
<tr>
<td>1</td>
<td>–</td>
<td>F₂₃.G₁².blue</td>
<td>–</td>
<td>Yellow</td>
</tr>
<tr>
<td>2</td>
<td>Yellow</td>
<td>Black</td>
<td>B² yellow</td>
<td>F orange</td>
</tr>
<tr>
<td>3</td>
<td>P² yellow</td>
<td>Brown</td>
<td>P yellow</td>
<td>Yellow</td>
</tr>
<tr>
<td>4</td>
<td>–</td>
<td>P purple</td>
<td>P yellow</td>
<td>Green</td>
</tr>
<tr>
<td>5</td>
<td>–</td>
<td>P purple</td>
<td>–</td>
<td>G yellow</td>
</tr>
<tr>
<td>6</td>
<td>–</td>
<td>P purple</td>
<td>–</td>
<td>Yellow</td>
</tr>
<tr>
<td>7</td>
<td>–</td>
<td>P purple</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>8</td>
<td>–</td>
<td>Purple</td>
<td>–</td>
<td>Black</td>
</tr>
<tr>
<td>9</td>
<td>–</td>
<td>Brown</td>
<td>P yellow</td>
<td>Black</td>
</tr>
<tr>
<td>10</td>
<td>Yellow</td>
<td>Brown</td>
<td>B² yellow</td>
<td>Orange</td>
</tr>
<tr>
<td>11</td>
<td>–</td>
<td>P purple</td>
<td>–</td>
<td>Black</td>
</tr>
<tr>
<td>12</td>
<td>–</td>
<td>F orange</td>
<td>–</td>
<td>Yellow</td>
</tr>
<tr>
<td>13</td>
<td>–</td>
<td>–</td>
<td>F² yellow</td>
<td>Orange</td>
</tr>
<tr>
<td>14</td>
<td>–</td>
<td>Purple</td>
<td>P yellow</td>
<td>Orange</td>
</tr>
<tr>
<td>15</td>
<td>–</td>
<td>Purple</td>
<td>–</td>
<td>Yellow</td>
</tr>
<tr>
<td>16</td>
<td>–</td>
<td>Purple</td>
<td>–</td>
<td>Black</td>
</tr>
<tr>
<td>17</td>
<td>P² yellow</td>
<td>Purple</td>
<td>P yellow</td>
<td>Orange</td>
</tr>
<tr>
<td>18</td>
<td>–</td>
<td>Purple</td>
<td>–</td>
<td>Blue</td>
</tr>
<tr>
<td>19</td>
<td>–</td>
<td>F blue</td>
<td>–</td>
<td>Yellow</td>
</tr>
<tr>
<td>20</td>
<td>–</td>
<td>F blue</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>21</td>
<td>–</td>
<td>F blue</td>
<td>–</td>
<td>F² blue</td>
</tr>
<tr>
<td>22</td>
<td>–</td>
<td>F² yellow</td>
<td>Yellow</td>
<td>Black</td>
</tr>
<tr>
<td>23</td>
<td>–</td>
<td>F² yellow</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>24</td>
<td>–</td>
<td>Purple</td>
<td>Yellow</td>
<td>Yellow</td>
</tr>
</tbody>
</table>

Table 1. Color properties of pigments extracted from the petals of yellow-flowered cyclamen and separated by two-dimensional thin-layer chromatography.

Table 2. Thin layer (cellulose) chromatographic separations of sugar moiety obtained by the acid hydrolysis of spot 2 isolated from the petals of yellow-flowered cyclamen.

<table>
<thead>
<tr>
<th>Compounds</th>
<th>RF values (×100) in EFAW²</th>
<th>Color²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spot 2 sugar</td>
<td>29.2</td>
<td>Brown</td>
</tr>
<tr>
<td>Authentic sugars</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Galactose</td>
<td>28.5</td>
<td>Brown</td>
</tr>
<tr>
<td>Glucose</td>
<td>29.2</td>
<td>Brown</td>
</tr>
<tr>
<td>Arabinose</td>
<td>38.0</td>
<td>Dark-brown</td>
</tr>
<tr>
<td>Xylose</td>
<td>45.3</td>
<td>Dark-brown</td>
</tr>
<tr>
<td>Rhamnose</td>
<td>56.2</td>
<td>Dark-green</td>
</tr>
</tbody>
</table>

² Ethyl acetate-pyridine-acetic acid-water (6 : 5 : 1 : 2, v/v/v).
³ Reaction with aniline-phosphoric acid (1).
mined to be a glycoside of chalcononaringenin. Moreover, the sugar residue attached was identified as glucose (Table 2), indicating that this compound was a chalcononaringenin glucoside.

Rf values from co-chromatographies, using four solvent systems, and spectral properties of spot 2 were compared with those of chalcononaringenin-2′-glucoside, the presumptive yellow pigment of carnation (3, 14). As summarized in Table 3, the Rf values, the maximum absorption wavelength and the bathochromic shift in alkaline solution of spot 2 were basically the same as those of chalcononaringenin-2′-glucoside. Furthermore, the data on HPLC coincided completely with chalcononaringenin-2′-glucoside (Fig. 4).

Fig. 5 shows the constitution of flavonol aglycones in petals of yellow- and white-flowered cyclamen. Van Bragt (12) reported the eight flavonol glycosides were isolated from cyclamen petals; two of their aglycones were identified as quercetin and kaempferol. In the present experiment, quercetin and/or kaempferol were also detected. Petals of white-flowered cyclamen contained a large amount of flavonols, especially kaempferol which made up over 80% of total flavonols. On the other hand, in petals of yellow-flowered cyclamen, only a trace

![Image of Fig. 3 HPLC tracing of authentic flavanones and the spot 2 aglycone of yellow-flowered cyclamen.](image1)

![Image of Fig. 4 HPLC profiles of spot 2 isolated from petals of yellow-flowered cyclamen and chalcononaringenin-2′-glucoside (Ch-2′G) isolated from petals of yellow-flowered carnation.](image2)

Table 3. Chromatographic and spectral properties of the spot 2 isolated from the petals of yellow-flowered cyclamen.

<table>
<thead>
<tr>
<th></th>
<th>Rf values (×100) in n-BAW⁴ 30%HOAc</th>
<th>λmax. in 95%EtOH(nm)</th>
<th>ΔλAlk.x (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Spot 2</td>
<td>67</td>
<td>39</td>
</tr>
<tr>
<td></td>
<td>Ch-2′G</td>
<td>68</td>
<td>39</td>
</tr>
</tbody>
</table>

⁴ n-Butanol-acetic acid-water (4:1:5, v/v/v, upper phase).

⁵ Phenol saturated with water.

⁶ 95% Ethanol + 2 drops of 1N sodium hydroxide.

⁷ Chalcononaringenin-2′-glucoside.
amount of quercetin could be detected. This finding suggests that the biosynthetic pathway from chalcone to flavanone is blocked in yellow-flowered cyclamen; i.e., this is a recessive mutant which lacks the chalcone-flavanone isomerase.

In Callistephus chinensis, Khun et al. (6) found that the recessive mutant 'chch' genotype with yellow flower accumulated a large amount of tetrahydroxychalcone. This genotype is deficient in chalcone-flavanone isomerase, whereas the dominant wild type allele with this enzyme could synthesize the higher oxidized flavonols and anthocyanins. This finding also indicates that 1) in the flavonoid biosynthesis the first product with C15 skeleton should be chalcones and not flavonones and 2) in the dominant genotype, common flavones, flavonols, and anthocyanins could be synthesized from this intermediate flavanone.

In cyclamen Seyffert (10) found a large amount of flavonols in the creamish flowered cultivars, and Van Bragt (12) suggested the possibility for the breeding of yellow-flowered cyclamen with the production of yellow flavonol glycosides, although he had not yet succeeded in the realization of true yellow-flowered cyclamen in his line of breeding. In our experiment, however, we discovered the occurrence of a chalcone which is, along with aurone, one of the most intensive agents for yellow flower color among various flavonoids.

Although in the plant kingdom the carotenoids are the major yellow pigments, both in color intensity and distribution, in some species, flavonoids contribute to the yellow flower colors. In this context, Harborne (4) gave a special emphasis on the production of the following flavonoids, namely the production of anthocolor pigments (chalcones and aurones), flavonols with unusual hydroxylation (e.g., 8-hydroxyquercetin and 6-hydroxyquercetin), glycosylation (e.g., quercetin 7- and 4'-glucoside), and methylation (e.g., quercetin 3'-methyl ether and myricetin dimethyl ether); and anthocyanins with unusual hydroxylation (3-deoxyanthocyanin).

Instead of higher oxidized flavonols and anthocyanins, our yellow-flowered mutant cyclamen accumulated a large amount of chalcone similar to the recessive mutant of Callistephus chinensis. However, the mutant cyclamen has a weak genetic leakage, that of synthesizing trace amounts of flavonols. We are currently investigating the mode of inheritance of the yellow pigment and the pathway of chalcone biosynthesis in this mutant to better understand how this pigment is produced and transmitted to its progenies. Simultaneously, we hope to create new cyclamen cultivars with deep yellow flowers.

Literature Cited

二倍体白花シクラメン品種の内婚系続からみつかっ
た黄花シクラメンについて、花弁の黄色発現に最も関
与していると思われる主要色素を単離精製し、薄層クロ
マトグラフィー、高速液体クロマトグラフィーおよ
びスペクトル特性の諸点から検討した結果、カルコノ
ナルリンゲニン-2'-グルコン(イソサリアルプド)と

黄花シクラメンの黄色発現に関与する
主要色素の同定

宮島郁夫¹・前原俊哉¹・鹿毛哲郎²・藤枝國光¹
¹九州大学農学部 812 福岡市東区稲崎
²鹿毛真耕園 839-11 久留米市大橋町常持

摘要

二倍体白花シクラメン品種の内婚系続からみつかっ
た黄花シクラメンについて、花弁の黄色発現に最も関
与していると思われる主要色素を単離精製し、薄層クロ
マトグラフィー、高速液体クロマトグラフィーおよ
びスペクトル特性の諸点から検討した結果、カルコノ
ナルリンゲニン-2'-グルコン(イソサリアルプド)と
同定した。

本植物はCallistephus chinensisにおいて見出された
カルコン-フラバノンイソメラーゼをもたない変異体と
同様、劣性突然変異体と思われた。さらに本色素を蓄
積することで淡黄色シクラメン品種作成の可能性に関
して考察した。