Reversal by Low Temperature on the Inhibition of Far-red Light Deficiency on Bulb Formation of *Allium × wakegi* Araki

Hiroko Yamazaki*, Megumi Hamano, Yoichi Yamato** and Hiroyuki Miura***
National Institute of Vegetable and Tea Science, Ano, Mie 514-2392

Summary
The interception of far-red (FR) light obviously inhibits the bulb formation of *Allium × wakegi* Araki plants grown in summer, but only slightly in those planted in autumn and grown until the following spring. The exposure to low temperature during winter is presumed to impair the effect of the FR-deficient light. To verify this hypothesis, bulbs of *A. × wakegi* 'Kiharabansai No.1', exposed to 5 or 25°C for 70 days, were grown under FR-deficient (−FR) and natural daylight (NDL). After exposure to 25°C, the plants grown under NDL formed bulbs, whereas those under −FR did not. Exposure to 5°C promoted the bulb formation in the plants grown under both light conditions. The inhibition of the bulb formation by −FR was incomplete after exposure to 5°C. The difference in the extent of the bulb formation between the plants grown under −FR and NDL was less remarkable after exposure to 5°C than to 25°C. Thus, *A. × wakegi* plants, exposed to 5°C, reversed the inhibitory effect of FR-deficient light on the bulb formation.

Key Words: *Allium × wakegi* Araki, bulb formation, far-red light, low temperature.
ん茎を植えた。5および25℃で保存したそれぞれのりん
茎について、植え付け直後からFR透過抑制フィルム
[YXE-10、三井化学(株)]で被覆する区（FR透過抑制区）
および無色透明フィルム(UVCスラーラー、みどり化工
(株)]と白生地紙で被覆する区（自然光区）を設けた。被
覆方法は地際から約15cmを開放したトンネル被覆とし
た。りん茎形成を誘導するため、植え付け直後から白熱
灯補光（PPFD約1μmol·m⁻²·s⁻¹）による14時間の長
日処理を行った。各処理区につき2ブロックを設け、ブロ
ック当たり80個のりん茎を植え付けた。春ご栽培では
ワケギは生育途中に低温に遭遇するが、貯蔵中のりん茎
への低温処理を植え付け後のりん茎形成に促進的に働く
ことが確認されている（山崎ら、2001）。従って、本試験
では処理の簡便性と栄養生長に対する温度処理の影響を
最小限に抑え得る理由から、植え付け前のりん茎に対して
温度処理を施した。

植え付け28、49、70および91日後に処理区当り10
株（ブロック当たり5株）を採集した。採取した各株から
1分けつを選び、処理区当り10分けつについて肥大指
数（葉鞘基部的最大径を最小径で割った値）を測定した。
また、各株から3分けつを選び、処理区当り3分けつ
についてりん葉（葉身の伸長がほとんどみられない肥厚
した葉）の形成状況を調査した。各光質処理区の透過スペクト
ルを波長別エネルギー分析装置（LI-1800、LI-COR
Inc.）で測定した。各光質処理区内の温度を植え付け直後
から70日後まで1時間間隔で測定した。

結果および考察

FR透過抑制区および自然光区では前報（Yamazakiら、
2000）と類似の透過スペクトルが得られた（データ省
略）。両処理区のスペクトルの大きな違いは、700－770nm
の波長域においてみられ、この波長域でのFR透過抑制区の
光量子吸収密度は自然光区に比べて低かった。FR透過抑制
区および自然光区のR/FR比（660±5/730±5nm）は、そ
れぞれ1.98および1.15であった。FR透過抑制および自
然光区の光合成有効放射束密度（晴天日の正午に測定）
は、それぞれ540および571μmol·m⁻²·s⁻¹、栽培期間
中の平均気温はそれぞれ19.3および19.8℃であり、光質
処理による大きな違いは認められなかった。

植え付け前のりん茎を25℃で保存した場合、自然光区
の肥大指数は植え付け前日数の増加に伴って上昇したが、
FR透過抑制区の肥大指数は一定の低いレベルで推移し、
両処理区の葉鞘基部の肥大程度には顕著な差が認められ
た（第1図A、第2図A）。自然光区のりん葉形成率は植
え付け28日後に13%、49日以降はほぼ100%となった。
一方、FR透過抑制区では調査期間を通じてりん葉の形成
はみられず、りん葉の形成状態にも光質条件の違いによ
って顕著な差が認められた（第3図A）。

植え付け前のりん茎を5℃で保存した場合、FR透過抑
制および自然光区の肥大指数はともに25℃で保存した場
合に比べて高まった（第1図）。低温処理による肥大指数
の上昇効果はFR透過抑制区で顕著に現れ、FR透過抑制
区および自然光区の葉鞘基部の肥大程度には保存温度が25℃
の場合ほど顕著な差はみられなかった（第1図B、第2図
B）。りん茎を5℃で保存した場合にはFR透過抑制区で
もりん葉が形成され、りん葉形成率は調査期間中60%前
後で推移した（第3図B）。自然光区のりん葉形成率は植
え付け28日に68%、49日以降は100%となった。

Fig. 1. Bulbing ratio of A. × wakgeki plants grown under FR
-deficient light (●) or natural daylight (○). Before
planting, bulbs were exposed to 25℃ (A) or 5℃ (B) for
70 days. Vertical bars represent SE (n=10).

Fig. 2. Shoots of A. × wakgeki plants grown under FR-
deficient (-FR) and natural daylight (NDL) for 70 days after
planting. Before planting, bulbs were exposed to 25℃ (A)
or 5℃ (B) for 70 days.

Fig. 3. Percentage of tillers with bulb scales in A. × wakgeki
plants grown under FR-deficient light (●) or natural
daylight (○). Before planting, bulbs were exposed to 25
℃ (A) or 5℃ (B) for 70 days. Thirty tillers for each
treatment were examined on each sampling day.

ウケギのりん茎形成に対する低温の効果は低温遭遇期間に応じて著しい変化することおよびその後の高温によって打ち消されることから（山崎ら，2001；山崎，2002）。低温の効果は殆どに実験的に制御できると考えられる。これまで著者らは光条件を直接としたりん茎形成の制御を検討してきたが，低温の効果を軽減する処理としても光条件を組み合わせることによってより効果的にりん茎形成を抑制できる可能性があると考えられた。

### 摘 要

FR透過抑制処理によるウケギのりん茎形成抑制効果は，夏どり栽培において春どり栽培で低く，春どり栽培での効果の低さがりん茎形成前の低温遭遇に起因することを実証するため，5または25℃で70日間保存したウケギのりん茎をFR透過抑制および自然光条件で生育させた。りん茎を25℃で保存した場合，自然光区ではりん茎が形成されたが，FR透過抑制区ではりん茎形成は完全に抑制された。りん茎を5℃で保存した場合には，両光条件区においてりん茎形成が促進され，FR透過抑制処理によってりん茎形成を抑制することはできなかった。FR透過抑制区と自然光区のりん茎形成程度の差は，りん茎を25℃で保存した場合に比べて5℃で保存した場合の方が小さく。FR透過抑制処理によるりん茎形成の抑制効果は前歯の低温遭遇によって低下することが示された。

謝辞 本研究の遂行にご協力いただいた野菜茶穀研究の真川せつ子氏および被覆資材を提供していただいた三井化学株式会社に深く感謝致します。

### 引用文献


寺分元一. 1965. タマネギの鱗茎形成に関する研究. 第1報. 鱗茎形成と生育を通じて及ぼす光の影響. 園学雑. 34: 52–60.


山崎博子. 2002. ワケギのりん茎形成制御およびりん茎形成・休眠の生理機構に関する研究. 京都大学学位論文.


