RAPD法によるCattleya属およびその近縁属の系統分類

金 国光1・内藤俊栄2**, 松井鋭一郎2*
1岐阜大学大学院総合農学研究科 501-1193 岐阜市柳戸
2岐阜大農学部 501-1193 岐阜市柳戸

Randomly Amplified Polymorphic DNA Analysis for Establishing Phylogenetic Relationships among Cattleya and its Allied Genera

Guo guang Jin1, Toshie Naito2** and Shuichiro Matsui2*
1The United Graduate School of Agricultural Science, Gifu University, Yanagido, Gifu 501-1193
2Faculty of Agriculture, Gifu University, Yanagido, Gifu 501-1193

Summary

Nine Cattleya species and their allied genera and 36 species of Cattleya were examined to clarify phylogenetic relationships within Cattleyae and Cattleya by using RAPD analyses. Fifteen random primers yielded 70 RAPD markers from 15 species of Cattleya and their allied genera. UPGMA (unweighted pair-group method using arithmetic averages) calculation presented three clusters, among genera with four pollina which indicate that Cattleya was close to Epidendrum secundum, but distant to Encyclia cordigera. Among the eight pollina genera, 4 genera, namely, Brassavola, Laelia, Rhyncholaelia, and Sophronitès, formed one cluster. Cluster analysis shows that Sophronitès is close to Leptotes bicolor having six pollina. Ninety three RAPD markers obtained from 36 Cattleya species by using 9 random primers presented clusters similar to the morphological classification of Cattleya species proposed by Brieger et al. who recognized 4 subgenera, namely, Cattleya, Diphylleia, Skinneri, and Rhizanthemum. In the Diphylleia section, Guttata was further separated into two clusters, C. guttata and C. schilleriana. C. kerrii ranked between subgenera Cattleya and Diphylleia. Therefore, further studies on genetic information of species belonging to subgenus Diphylleia are needed.

Key Words: Cattleya, Epidendrinae, phylogenetic relationship, RAPD.

緒 言

洋ランの代名詞とされるCattleya属はシダなどとともにブラジルからイギリスにもたらされ、園芸家Cattleyaは1821年に開花したのは1821年であり、Cattleya labiataと Lindleyによって命名された。その後、愛好家の増加に伴い同様の美しい花といわれるCattleyaはイギリスやベルギーに多量に輸入され、それがC. labiataを含むC. labiataの多種名を指すC. labiataグループと呼ばれた(Northen, 1970).

Cattleya属はBriegerら(1981)のまとめたSchleichert's Die Orchideenでは4つの亜属、すなわち、1葉のCattleya

亜属（単葉種）、2-3葉性で葉は比較的大きく、偽球茎上のシースは葉身をもたないDiphylleia亜属(Intermedia節、Guttata節、Acrantherum節)、同様に2-3葉性で葉は比較的小さく、各節にシースは葉身をもた、上位節のものが大きくなり、花は多輪のSkinneri亜属(Skinneri節、Aurantiaca節)、花序を葉の退化したシュートにつく、その後1-2葉をつける栄養茎を発育させるRhizanthemum亜属(C. walkeriana、C. nobilior)を含む分類されている。Withner(1988)は近年リップの形態からCattleya亜属をさらにCattleya亜属(Cattleya節、Xantheae節、Maximae節)とStellata亜属に区別し、また、Laelia属とCattleya属の自然雑種とされることもあるC. dormanianaをLaelioidae亜属に、Diphylleia亜属をAclandia亜属、Intermedia亜属、Schomburgkoida亜属、Falcata亜属(Guttata節、Granulosae節)に再分類した。

Cattleya属とその近縁属の花粉塊は常に花粉塊柄(caudicle)をもち、顕著な脚と粘着体(viscidium)がある。
Epidendrinaceae 鬱連に分類されている (Brieger ら, 1981)。
この中には脳経は完全にずれずが枝から遊離または最大で
しい枝の半分でこれと合着する Cattleyae (Cattleya,
Laelia などの属)。脳経はいわじ枝とその先端まで合着し、筒
を形成する Epidendria (Epidendrum 属など) のほか、Pon-
erai また Hexiseae を含む。Cattleyae は葉の着生部位、偽球
室の管状性、ついて花粉堆で細分化されている。一方、
Pabst・Dungs (1977) は Epidendria の属を花粉 (mentum)
の有無で分類し、ついて花粉堆を数分ける。これらのラ
ンは、植生地の地勢的変化や地理的分布域のみならず交配
媒介者の種類についても多様であり、種の分化が著しいこ
とを示し、Dressler (1993) は Laeliinae (Epipendriniae) 鬱
連として、43 属、466 種をあげている。自然界に種間のみ
ならず亜属間種が存在し、さらに容易に人工的な種がで
きることとは分類が不完全であるためとの指摘がある
(=Bechtel ら, 1981; 里見・土肥, 1972; Withner, 1988)。

植物分類では従来の形態分類から PCR に基づいた
DNA 多型解析法 (Williams ら, 1990)、DNA 塩基配列法
(Van den Berg ら, 2000) などによる結果が最近報告され
ている。Cattleya 属を含む Laeliinae (Brieger ら 1981) の
分類では Epidendriniae 亜連の分類に関して核リボソーム
DNA ITS 領域の塩基配列法 (Van den Berg ら, 2000)
による分子系統樹が報告されている。しかしながら、より
精度の高い系統仮説を提示するためには ITS 領域のみな
らず複数の遺伝子領域またはゲノム全体を対象にした分
析が必要と思われる。RAPD (randomly amplified poly
morphomic DNA) 分析はゲノム全体を対象にした最も簡便
な DNA 多型解析法であり、植物の系統分類に有効な手段
として用いられている。本報告では RAPD 法による解析によ
って Cattleya 属とその近縁属の類縁関係および Cattleya 属
の4亜属に属する種の関係を調べ、その結果を Brieger ら
(1981) の形態分類と比較し、さらに Van den Berg ら
(2000) の核リボソーム DNA ITS 領域の塩基配列決定法に
たる結果と比較検討し、Epidendriniae 亜連内の亜および
種間の類縁関係を明確にしようとした。

材料および方法

1. 植物材料
Cattleya 属とその近縁属の類縁を分析するために 9 属の
15 種を用いた。Brieger らの 1981 年の分類によれば第 1 表
に示した。Brieger 属内の分析には 36 種 (40 個体) を供試
した。4 亜属、7 種に分けて第 2 表に示した。材料はカトレ
アを主に栽培するアマチュアから提供を受けたほか、ラン
種苗会社 (国際園芸；大場蘭園；山田蘭園)から購入し
たものおよび被暦大学附属農場で保存するものを用いた。
した。

2. DNA の抽出および PCR
Kobayash ら (1998) の改変 CTAB 法 (セチトトリメチ
ルアンモノウムプロマイド試薬を 0.1% から 0.61% に変
更) により、DNA を抽出した。Cattleya 属とその近縁属の
類縁の分析にはオペロン製の 10 塩基ランダムプライマー
6 種 (OPR06, OPR08, OPR10, OPR11, OPR13,
OPR02), 和光純薬製の 12 塩基ランダムプライマー 9 種
(A01-A09), 合わせて 15 種。Cattleya 属内の分析にはオペ
ロン製の 10 塩基ランダムプライマー 9 種 (OPE01,
OPE06, OPE14, OPE16, OPE17, OPE20, OPR06,
OPR11, OPR13) を用いた (第 3 表)。PCR 反応液セット
(TaKaRa, Taq™, Code No. R001B) を用い、Cattleya 属
とその近縁属の類縁の分析では、94℃, 5 分間の前処理後,
始めの 2 サイクルは 94℃で 1 分間変化、45℃で 2 分間ア
ーニング、72℃で 3 分間伸長反応を繰り返し、その後の
40 サイクルはアニーリングを 1 分間、伸長反応を 2 分間
変更した。最後に 72℃で 10 分間の伸長反応を行った
(Sanyo, DNA Amplifier MIR-40); Cattleya 属内の分析
では、上述のアニーリング温度を 40℃に下げ、始めの 2 サ
イクルを 1 サイクルに、その次を 44 サイクルに変更した。
PCR 産物は 1.5% ガラーソールゲルで電気泳動した後、エチ
ジムプロマイド溶液で染色した。泳動像は DNS 電気泳
動ゲルキニーメーションシステムで撮影・記録した。
RAPD マーカー (個体間の多型を示す PCR 産物)に基づい
て、種間の類似度係数 (Sorensen 係数) を求め、
UPGMA 法によりクラスター分析を行い (Romesburg, 1992)
、コージュ関係係数を算出し、デンドログラムを作成
して類縁関係を推定した。

結果
1. Cattleya 属とその近縁属
Cattleya 属とその近縁属などを合わせて 9 属の 15 種を対
象に 10 塩基ランダムプライマー 6 種と 12 塩基ランダムプ
ライマー 9 種を用いて PCR を行った結果、全ての種が持つ
共通バンドは見られず、検出されたバンドは全て多型であっ
た。OPR13 で得られたバンドを第 1 図に示した。その中
で再現性の高い 70 個の RAPD マーカーが得られ
(第 3 表)。種間の類似度程度を示す類似度係数を求め
た。Cattleya 属内の 5 種の類似度係数は 0.5 ～ 0.754,
Laelia 属内の 3 種間は 0.609 ～ 0.75 と高く、他の属間より近縁であ
ることを示した。属間では、Rhyncholaelia 属と
Brassavola 属は類似度係数が高い (0.615), Cattleya 属は
Laelia 属 (0.318-0.52), Sophronitiss 属 (0.302-0.435),
Brassavola 属 (0.318-0.449), Epidendrum 属 (0.328-
0.378) との類似度係数が比較的高かった。Sophronitella
属は Leptotes 属, Sophronitiss 属との類似度係数が高く、
Epidendrum 属は Cattleya 属のついに Encyclia 属, Soph-
ronitella 属と高かった。この類似度係数を基に UPGMA
法によるクラスター分析を行いデンドログラムを作成
した。類似度係数 0.505 レベルで 8 グループに分かれ、属間
の区別が可能であった (第 2 図)。類似度マトリックスとデ
Table 1. *Cattleyae* and *Epidendrum* were sampled for RAPD analysis. Classification follows Brieger et al. (1981).

<table>
<thead>
<tr>
<th>Taxa</th>
<th>Distribution</th>
<th>Diagnostic characters of each genus</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lip entirely free from column or connate maximally with lower half of the column</td>
<td>Clinandrium walls relatively small; anthers lie on the upper surface; very small pseudobulb with 1 leaf; leaf lance shape, upright; inflorescence nearly present with flowers bright red to salmon</td>
<td>OBk</td>
<td>Cattleyae</td>
</tr>
<tr>
<td>Stem not so much compressed or not thick cylindrical; pollinia 4 or 8</td>
<td>Clinandrium walls relatively small; anthers lie on the upper surface; inflorescence always with an obvious stalk, sometimes with a long peduncle; pseudobulb greater than 25 cm; lip completely free from column (except L. perrini); sepal and petal flat, or rarely wavy</td>
<td>Lf Lg Lh</td>
<td></td>
</tr>
<tr>
<td>Pollinia 8; caudicle bridge present</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ovary with a short neck under the corolla</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4'. Ovary with a long neck under the corolla</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sophronitis coccinea (Lindl.) Rchb. f.</td>
<td>Eastern Brazil</td>
<td>Shoot axis cylindrical, with uniform diameter; apical leaf cylindrical—needle shape, succulent; inflorescence, a racenose of a few flowers; axis spur very long; flower not lobed</td>
<td>Bi</td>
</tr>
<tr>
<td>Laelia anceps Lindl. var. veitchiana 'B'.</td>
<td>Mexico</td>
<td>Shoot axis fusiform, ligneous; apical leaf flat, broad oval; cluster short, with 1, to few flowers; flowers very large, not lobed</td>
<td></td>
</tr>
<tr>
<td>Laelia dayana Rchb. f. 'Dose'</td>
<td>Brazil</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Laelia purpurata Lindl. var. anelata 'Adam's I'</td>
<td>Brazil</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sophronitella violacea (Lindl.) Schltr.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brassavola cucullata (L.) R. Br.</td>
<td>From Mexico to Honduras and the north part of south America</td>
<td>Column without long upright wings; anther present on an upper side of column; pseudobulb pear-shaped, lip trilobed</td>
<td>Enl</td>
</tr>
<tr>
<td>Rhyncholaelia digbyana (Lindl.) Schltr. 'York'</td>
<td>Mexico, Honduras</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Encyclia cordigera (H. B. K.) Dressler var. album 'Henrique'</td>
<td>Mexico, Central America, Colombia, Venezuela</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cattleya maxima Lindl.</td>
<td>Ecuador, Colombia, Peru</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cattleya bowringiana Veitch. var. coerulea</td>
<td>Guatemala, Belize</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cattleya aurantiaca (Batem. ex Lindl.) Don.</td>
<td>Guatemala, Mexico, Honduras, Salvador</td>
<td>Column without long upright wings, anther not present on a dorsal side of column without a keel, trilobed</td>
<td>CSe</td>
</tr>
<tr>
<td>Cattleya skinneri Batem. ‘Casa Luna’</td>
<td>Central America</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cattleya walkeriana Gardn. var. coerulea</td>
<td>Brazil</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2'. Stem strongly compressed, thick cylindrical, with a thick needle—like leaf; pollinia 6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leptotes bicolor Lindl.</td>
<td>Eastern Brazil</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Epidendrum secundum Jacq. var. album</td>
<td>Peru, Bolivia, Colombia, Ecuador, Venezuela</td>
<td>Pollinia 4 with caudicle bands without visidium; stem cylindrical with leaves</td>
<td>EPo</td>
</tr>
</tbody>
</table>

2. Coloration epithet and cultivar epithet.
3. Obha Orchid Nursery.
4. The Exp. Farm, Gifu Univ.
5. Yamada Orchids.
6. Amateur.

エンドログラムを比較するコフェン相関係数は0.851で、両者の歪みは大きくなかった。*Cattleya*属の5種は類似度係数0.563~0.754範囲で形態的な性状による分類、すなわち*Cattleya*亜属(*C. maxima*), *Skinneri*亜属, *Rhizanthemum*亜属の分類と同じ結果が得られた。
Table 2. Plant materials of *Cattleya* species used for RAPD analysis. Classification follows Brieger *et al.* (1981).

<table>
<thead>
<tr>
<th>Taxa</th>
<th>Distribution</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>No sprout dimorphism</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subgenus Cattleya: Pseudobulb fusiform, laterally compressed, 1 leaf, side lobes almost not distinatively separated from the middle lobe; flowers large (except C. luteola)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. quadricolor Batem.</td>
<td>Colombia</td>
<td>CC2<sup>+</sup></td>
</tr>
<tr>
<td>C. aurea Lindl. ‘Scull’s Tippery’</td>
<td>Colombia</td>
<td>YT3<sup>W</sup></td>
</tr>
<tr>
<td>C. gaskelliana Rchb. f. var. alba</td>
<td>Colombia, Venezuela</td>
<td>C04<sup>+</sup></td>
</tr>
<tr>
<td>C. labiata Lindl. var. amoena ‘Fowleiana’</td>
<td>Brazil</td>
<td>CC7<sup>W</sup></td>
</tr>
<tr>
<td>C. luteola Lindl.</td>
<td>Brazil, Peru, Ecuador, Bolivia</td>
<td>YT8<sup>W</sup></td>
</tr>
<tr>
<td>C. mossiae Parker (var. semialba × var. semialba ‘Idem’)</td>
<td>Venezuela</td>
<td>YT9<sup>W</sup></td>
</tr>
<tr>
<td>C. pericoviana (Rchb.f.) O’ Brien. ‘Summit’</td>
<td>Venezuela</td>
<td>C01<sup>W</sup></td>
</tr>
<tr>
<td>C. rex O’ Brien.</td>
<td>Colombia, Peru, Brazil</td>
<td>IN11<sup>W</sup></td>
</tr>
<tr>
<td>C. schroderae (Rchb. f.) Hort. ‘C. Arango’ × ‘G. Misas’</td>
<td>Colombia</td>
<td>IN12<sup>W</sup></td>
</tr>
<tr>
<td>C. trianaei Lindl. & Rchb. f. ‘Junio’</td>
<td>Colombia</td>
<td>CC13<sup>W</sup></td>
</tr>
<tr>
<td>C. trianaei Lindl. & Rchb. f. ‘Dan’</td>
<td>Colombia</td>
<td>CC14<sup>W</sup></td>
</tr>
<tr>
<td>C. trianaei Lindl. & Rchb. f. var. amesiana ‘Floralia’</td>
<td>Colombia</td>
<td>CC15<sup>W</sup></td>
</tr>
<tr>
<td>C. warneri T. Moore</td>
<td>Brazil</td>
<td>CC16<sup>W</sup></td>
</tr>
<tr>
<td>C. warscewiczii Rchb. f. var. semialba</td>
<td>Colombia, Brazil</td>
<td>CC5<sup>W</sup></td>
</tr>
<tr>
<td>C. warscewiczii Rchb. f. ‘(Low)’ × ‘Sanderiana’</td>
<td>Colombia, Brazil</td>
<td>CC6<sup>W</sup></td>
</tr>
<tr>
<td>C. warscewiczii Rchb. f. var. alba ‘Leo Holguin’</td>
<td>Colombia, Brazil</td>
<td>CC17<sup>W</sup></td>
</tr>
<tr>
<td>C. tricolor Rchb. f.</td>
<td>Ecuador, Colombia, Peru</td>
<td>YT18<sup>W</sup></td>
</tr>
<tr>
<td>C. jennmannii Rolfe var. alba ‘Fuchs Snow’</td>
<td>Venezuela</td>
<td>IN19<sup>W</sup></td>
</tr>
</tbody>
</table>

Subgenus *Diphyllae*: Pseudobulb cylindrical to clavate, very ligneous, 2–3 leaves (*C. kerrii* largely 1 leaf); leaf sheath of pseudobulbs without leaf lamina; flowers relatively large, with thick texture

Section *Intermedia*: Side lobes of lip large, round, in the middle lobe present

<table>
<thead>
<tr>
<th>Taxa</th>
<th>Distribution</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. kerrii Breiger & Bacal.</td>
<td>Brazil</td>
<td>YT1<sup>W</sup></td>
</tr>
<tr>
<td>C. intermedia Graham var. aquini ‘Boa Vista’</td>
<td>Brazil</td>
<td>OB20<sup>W</sup></td>
</tr>
<tr>
<td>C. harrisoniana (Batem.) Lindl. ‘Shonan’</td>
<td>Brazil</td>
<td>OB21<sup>W</sup></td>
</tr>
<tr>
<td>C. forbesii Lindl. var. alba</td>
<td>Brazil</td>
<td>YT24<sup>W</sup></td>
</tr>
<tr>
<td>C. loddigesii Lindl.</td>
<td>Brazil, Argentina</td>
<td>CI27<sup>W</sup></td>
</tr>
<tr>
<td>C. × dolosa Rchb. f. var. alba</td>
<td>Brazil</td>
<td>YT28<sup>W</sup></td>
</tr>
</tbody>
</table>

Section *Guttatae*: Side lobes of lip large, obtusely pointed; the middle lobe with longer and band form to bent clavate process

<table>
<thead>
<tr>
<th>Taxa</th>
<th>Distribution</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. guttata Lindl. ‘Nakajima’</td>
<td>Brazil</td>
<td>OB22<sup>W</sup></td>
</tr>
<tr>
<td>C. elongata Barb. Rodr.,</td>
<td>Brazil</td>
<td>OB23<sup>W</sup></td>
</tr>
<tr>
<td>C. leopoldii Versch.</td>
<td>Brazil</td>
<td>IN5<sup>W</sup></td>
</tr>
<tr>
<td>C. amethystoglossa Linden & Rchb. f.</td>
<td>Brazil</td>
<td>CG26<sup>W</sup></td>
</tr>
<tr>
<td>C. porphyroglottis Linden & Rchb. f.</td>
<td>Brazil</td>
<td>YT31<sup>W</sup></td>
</tr>
<tr>
<td>C. schilleriana Rchb. f. ‘Sanderiana’</td>
<td>Brazil</td>
<td>YT32<sup>W</sup></td>
</tr>
<tr>
<td>C. violacea (H.B.K.) Rolfe</td>
<td>Guyana to Peru, including Venezuela, Ecuador, Brazil</td>
<td>YT33<sup>W</sup></td>
</tr>
</tbody>
</table>

Section *Acrantherum*: Side lobes small, round or absent, middle lobe with long, bent wedge shaped lower part of it

<table>
<thead>
<tr>
<th>Taxa</th>
<th>Distribution</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. aclandiae Lindl.</td>
<td>Brazil</td>
<td>YT29<sup>W</sup></td>
</tr>
<tr>
<td>C. bicolor Lindl.</td>
<td>Brazil</td>
<td>CA30<sup>W</sup></td>
</tr>
</tbody>
</table>

Subgenus *Skinner*: Leaf sheaths with lamina which become large to the top end; leaves relatively smaller, with delicate texture

Section *Skinner*: Flower intermediate size (sepals about 45mm long); labellum trilobed

<table>
<thead>
<tr>
<th>Taxa</th>
<th>Distribution</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. skinneri Batem. ‘Blumen Insel’</td>
<td>Guatemala to Panama</td>
<td>IN44<sup>W</sup></td>
</tr>
<tr>
<td>C. bowringiana Veitch var. coerulea</td>
<td>Guatemala, Belize</td>
<td>YT35<sup>W</sup></td>
</tr>
<tr>
<td>C. deckeri Klotsch. ‘Brech’</td>
<td>Guatemala to Panama, Colombia, Venezuela, Trinidad</td>
<td>CS36<sup>W</sup></td>
</tr>
</tbody>
</table>

Section *Australiaca*: Flower small (sepals about 25 mm long); labellum not split

(Continue to next page)
Table 2.	(Continued)	
Taxa	Distribution	Source
C. aurantiaca (Batem. ex Lindl.) Don. ‘Marigold’	Mexico, Guatemala, El Salvador, Honduras	YT37*
C. × guatemalensis T. Moore	Guatemala	YT38*

Dimorphism present; Inflorescence on specific leafless, in general, sprouts in sympodial branching system; Subgenus Rhizanthemum: 1 or 2 leaves; side lobes of lip small and rounded.

Table 3.	Random primers used for RAPD analysis and numbers of markers obtained.		
Primer	Sequence (5′−3′)	Numbers of markers	
		Genera	Cattleya
A01	TGCACATCCAACA	2	-
A02	GCCATCGGCTTT	6	-
A03	GAGCGACGACGA	7	-
A04	ATCCAGGCACCA	3	-
A05	AGCGAGCGCTCA	9	-
A06	GCCGAGCTGACG	4	-
A07	TCGTCGCGACCA	4	-
A08	GCCCCCGTGGACCA	5	-
A09	CCGCAGTCTGCTG	6	-
OPE01	CCAGGATGTC	-	11
OPE02	GGTGGGGGGA	-	1
OPE06	AAGCCCGGCTT	-	13
OPE14	TGGCGCTGAG	-	7
OPE16	GTGACTGGT	-	14
OPE17	CTACGCGGCT	-	3
OPE20	AACGTTAGGCAA	-	15
OPR06	GTCTACGGCA	-	9
OPR08	CCCGTTGCTT	-	4
OPR10	CACCTTTGGCCCA	-	8
OPR11	GTACGGCTC	-	10
OPR13	GGACGACAGAG	-	6

Total: 70 93

1 Wako Pure Chemical Inc.
2 Operon Tech. Inc.

2. Cattleya 属内

Cattleya 属の40種を対象に10塩基ランダムプライマー9種を用いてPCRを行った結果、全種が持っている共通バンドはOPR13プライマーによって960 bpに出現するバ
ンド1個のみ (OPR13−960) であり (第3図)。他は多型を示した。多型バンドの中で再現性が高い93個のRAPDマー
カーが得られた (第3表)。これらクラスター分析結果か
ら類似度係数が0.413レベルで、*C. kerrii* を除く4つの亜
属間区別ができた (第4図)。類似度マトリックスとデンド
ログラムを比較するコーレン相関係数は0.811であっ
た。*Cattleya* 亜属（類似度係数は0.461−0.870）では、
C. trianaei の3品種は0.786レベルの比較的高い類似関
係で同じクラスターにまとまり、*C. warscewiczii* の3品種の
中、var. *semialba* と var. *alba* ‘Leo Holguin’ は比較的近
い関係を示したが、'Low's' と 'Sanderiana' は遠かった。
Diphyllyae 亜属では*Intermedia* 節の3種は同じクラスター
を作ったが、*Loddigesii* は離れたクラスターに入った。
なお、これと血縁関係を持っている *C. × dolosa* var. alba
（C. loddigesii × C. walkeriana）の自然種群とされる）とは
近い関係を示した。また *C. kerrii* は *Intermedia* 節の種が
すべて持っている OPE17−830 バンドを持っていなかっ
た。*Guttata* 節の7種は2つのグループに分かれた。すな
わち、C. guttata 'Nakajima', C. elongata, C. leopoldii お
および C. amethystoglossa の4種は *Intermedia* 節と相対的
に近い類縁を示し、C. porphyroglossa, C. schilleriana

![Fig. 1. RAPD profiles obtained from Cattleya and allied genera using OPR13 primer. M: 100bp DNA ladder, 01: Cattleya maxima, 02: Cattleya bowringiana, 03: Cattleya aurantiaca, 04: Cattleya skinneri, 05: Cattleya walkeriana, 06: Laelia anceps, 07: Laelia dayana, 08: Laelia purpurata, 09: Brassavola coccinea, 10: Rhyncholaelia digbyana, 11: Sophronitis coccinea, 12: Encyclia cordigera, 13: Sophronitella violacea, 14: Leptotes bicolor, 15: Epidendrum secundum. Arrows indicate makers-used for UPGMA analysis.](image-url)
Fig. 2. A dendrogram of *Cattleya* and allied genera based on UPGMA analysis system using 15 primers.

'Sanderiana' および *C. violacea* の 3 種は相対的に Acranthenum 範囲近いクラスターを形成した。Skinneri 亜属（類似度係数は 0.492–0.723）では、*C. bowringiana* と *C. deckeri* 'Brecht' は近い関係を示し、*C. × guatemalensis* (C. skinneri と C. aurantiaca の天然種群とされる) は C. aurantiaca 'Marigold' より C. skinneri 'Blumen Insel' に近かった。Rhizanthenum 亜属の C. walkeriana var. coerulea 'Azul Perfect' と C. nobilior var. coerulea の 2 種は 0.9 の高い類似度係数を示し、他の種と明確に分かれた。

考 察

RAPD 分析はランでは Cymbidium 属 (Choi ら, 1998), Calanthe 属 (Hyun ら, 1999), Phalaenopsis 属 (Kim ら, 2001) などの属内種類間関係の推定に有効であることが明らかになっている。本研究では Cattleya 属とその近縁 8 属 15 種から得られた PCR 産物は全ての種に共通なバンドは皆無で、全てが多型を示し、これらの属は遺伝的な分化の大きいことが示された。クラスター分析により 8 グループに分かれた結果は、第 1 表に示す花粉類数を 4 と 8 のものと花粉数 6 のものとに区分し、さらに花粉数 4 と 8 を区別する分類 (Brieger ら, 1981) にほぼ合致する属
間の類似度を示した。したがって、同じ8種の花粉塊数を持ち、属間の交配が容易であるLaelia属、Sophronitis属、Rhynchochilus属およびBrassavola属は近い関係を示した。交配親和性の高い種間で類縁関係が近いことはシャンランと他のシジビウム属間のRAPD解析で示されている（Choiら，1998）。しかしながら、核リポソームDNA ITS領域の塩基配列解析を基に得られた花粉塊8種のBrassavola属とRhynchochilus属が花粉塊4種のCattleya属と同じグループに入る系統樹（Van den Bergら，2000）と本研究の結果は大きく異なった。

本研究にも形態的分類と合致しない点がいくらかあった。Sophronitiella属はSophronitis属と同様花粉塊数を持ち、花被の下に花被の緑が短いため形態的に似ているが、遠縁関係を示した。かえって花粉塊6（4種は大きく、2種は小さい）のLepiotes属に近かった。両者は似た性で、匍匐茎を持ち、葉より短い花序と1〜数花を着け、茎弁とすい柱も似ている（Bechtelら，1981）。もしどうの相違点はCattleya属と Epidendrum属またはEncyclia属との類縁であった。これらは花粉塊4種で類似し、棒状の茎で多花性のEpidendrum属は球形の仮球茎の頂端に数葉を着け、Encyclia属はCattleya属に近縁である。この点はRAPD分析と形態的分類の最も大きな相違点であった。類似する結果はVan den Bergら（2000）のLaeliinae亜連の核リポソームDNA ITS領域の塩基配列解析で報告されている。また、Yukawaら（1993）は葉緑体DNAのRFLP分析によりDendrobini亜連で異なる属のものがDendrobium属に含まれ、Dendrobini亜連に属するものの他に属のものである可能性を示している。

Laelia属は3種のみを用いたが、前のある長い花序を持つLaelia亜連に属すL. ancepsと、Brasilienses亜連に属し、常に1葉でシークが広いものはL. purpurataとL. dayanaは分離した。Van den Bergら（2000）はLaelia属は、polyphyleticな結果を示し、ブラジル産Laelia属はCattleya属として数値解析を行い、系統学的関係を示すcolsを区別してLaelia属は多系統群であるとされる。試供した種の数が少なくなかったのでさらに近縁の属と属内の種を加えてLaelia属として1つクライスターカを作ることを検討する必要がある。

Cattleya属の4つの亜属を含む36種（40個体）は共通バッドが1つで、他は多型を示し、Cattleya亜属（14種）、Diphyllae亜属（14種）、Skinneri亜属（5種）、Rhizanthes亜属（2種）とC. kerriiの5つのクライスターに分かれた。C. kerriiを除くとこの結果はBriegerら（1981）の形態的分類およびVan den Bergら（2000）のITS領域のDNA配列解析結果で示される4亜属に区別できる点で一致したが、亜属内の種間関係で異なる結果が示された。

C. kerriiはブラジルに自生する稀少な着生種で、1〜2葉、茎は細く、形態的な分類と核リポソームDNA ITS領域の塩基配列解析（Van den Bergら，2000）と一致し、Diphyllae亜属Intermediate亜属に属した。しかし、RAPD分析ではDiphyllae亜属とCattleya亜属の中間位に位置する際に立った差異が見られた。Cattleya亜属内ではC. labiata

Fig. 4. A dendrogram of Cattleya species based on UPGMA analysis system using 9 primers.

