5. 結 言

試作薄片切断機を使用した実験結果からつぎの結論を得た。
1) ワイヤ速度の増大とともに切断量は増大し、平行度および表面あらさは減少する。
2) #600 および #800 の砥粒を使用した場合、切断量は法線抵抗に対し直線的関係にあるが、限度がある。#2000 の砥粒を使用した場合、限度に明確さはなく、切断量は法線抵抗と二次曲線的関係にある。また切断量は砥粒径度によって異なる。#2000 を除くと平行度は砥粒径度が大きくなると小さくなり、また法線荷重が大きくなると大きくなる。また表面あらさは法線抵抗の増大とともにほぼ直線的に増大し、また砥粒径度が大きくなると小さくなる。
3) 切断はある砥粒径度において極大値をとり、その極大値を与える砥粒径度が大きくなると大きくなる。平行度および表面あらさは砥粒径度が増すにつれて小さくなる。
4) #400 程度の砥粒を用いた場合、ある程度の分布範囲をもつ砥粒のほうが良好である。
5) 切断条件の良否の検討に法線抵抗および抵抗比を用いることができる。
6) 切断面は大きな欠陥状破面、微細な破面および引き裂傷からできている。

文 献
1) 宮崎、渡辺：機械学会創立70周年記念全国四国九州地区講演会論文集 No.185 (1967-11) 93。
2) 砥粒加工研究会：砥粒加工技術便覧、日刊工業新聞社 (昭40) 902。

正 誤 表
精密機械 Vol.37, No.2, No.3
「炭素鋼の層状のセメントタイト量が加工層に及ぼす影響」 (第1, 2 報)

<table>
<thead>
<tr>
<th>頁</th>
<th>誤</th>
<th>正</th>
</tr>
</thead>
<tbody>
<tr>
<td>114 頁 3.1.2 の 7行目</td>
<td>これに対して…………………</td>
<td>最も大きくなる。</td>
</tr>
<tr>
<td>115 頁 図5中</td>
<td>1.0×10⁻³ セメントタイト</td>
<td>● 1.0×10⁻³ セメントタイト</td>
</tr>
<tr>
<td></td>
<td>6.7×10⁻³</td>
<td>△ 6.7×10⁻³</td>
</tr>
<tr>
<td></td>
<td>14.1×10⁻³</td>
<td>○ 14.1×10⁻³</td>
</tr>
<tr>
<td>174 頁 図6</td>
<td>(×50)</td>
<td>(×50)×1/2</td>
</tr>
<tr>
<td>175 頁 図8</td>
<td>(×400)</td>
<td>(×400)×1/2</td>
</tr>
<tr>
<td>174 頁 脚注**</td>
<td>2FeO+C=2Fe+CO₂</td>
<td>2FeO+2C=2Fe+2CO</td>
</tr>
<tr>
<td></td>
<td>Fe₂O₃+2C=3Fe+CO₂</td>
<td>Fe₂O₃+4C=3Fe+4CO</td>
</tr>
<tr>
<td></td>
<td>6Fe₂O₃+C+4Fe₂O₃+CO₂</td>
<td>Fe₂O₃+3C=2Fe+3CO</td>
</tr>
</tbody>
</table>