損失関数を適用したプラスチック寸法許容差の決め方*

鴨下隆志** 松田次郎**

Key words: dimension tolerance, loss function, measurement control, plastic parts

1. はじめに

製品を設計・製造するにあたって製品品質の許容差を適切に決定することは重要な問題である。一般に寸法許容差を決定するには、寸法区分ごとに等級化されている許容差の表中より、対象となる製品の基本寸法、使用目的、種々の要件などに応じて許容差を選択する場合が多い。しかし、プラスチックは金属に比べて歴史の浅いこともあって、プラスチック成形品などを工業用部品に適用する場合、寸法許容差を適切に与えることが困難な場合も少なくない。特に品質に対する要求が厳しくなり、製造技術上の限界に近づくと許容差の決め方が定め方について問題が発生しやすくなる。こうした状態はプラスチック成形品の精度向上の妨げにもなる。

そこで、プラスチック成形品に対する寸法許容差を合理的に決定するための新しい方法として、工程能力及び計測の誤差と経済的観点から自由的に許容差を決定する方法が提案され JIS として定められた。そこで本論文では、現在までに適用されているプラスチック成形品の寸法許容差（以下実態寸法許容差という）と経済的観点から算出した寸法許容差（以下経済寸法許容差という）との対応を求めるため、プラスチック製品の寸法に関するアンケート調査を実施し寸法許容差について検討を加えた。なお、本論文で示した資料は JIS 化を図るための基礎となった。

2. 製品寸法と許容差の対応

プラスチックの成形加工にかかわる製品 130 社を対象に寸法許容差に関するアンケートを実施した。回答

* 原稿受付 昭和 61 年 3 月 5 日
** 正会員 計量研究所（茨城県新治郡松川町欧原 1-1-4）

図 1 アンケート回答者の業種内容
精密工学会誌 52/8/1986

図 2 製品基本寸法と許容差の関係

図 3 尺寸許容差と機能の関係

図 4 許容差と経済性

図 5 測定項目からみた実態寸法許容差

図 6 實態寸法許容差の分布

べきであると判断し、現実と理想の間にはギャップが存在する。

測定項目別に、実態寸法許容差がどう受けとめられているかについて調べた結果を図 5 に示す。現状の許容差に対する判断は測定項目によらず、おおむね一定の傾向を示し、いずれの測定項目も適当であるとする判断が 50〜70％と多く、厳しすぎるとする判断は 20〜30％と少ない。またゆるすぎるという判断は、わずかに数％であった。

3. 加工技術と計測技術の対応

成形品の寸法許容差について、その実態を調べた結果は図 6 の通りである。±20〜30 μm および ±150 μm 付近に分布の山が認められ、±20 μm 付近の山は一般に精密成形品と呼ばれている部分に相当する。現状の成形加工は成形条件を一定に保つことにおいて成形品のばらつきをおさえようとする考え方がある。このような方法で成形加工の最適条件を推定する実験を行っても、通常では加工限界がほぼ ±20 μm 程度であることが確かめられている 22).

従って、許容差が設定されたとしても成形加工のばらつきを減らすために、次の対策を考えておくことが必要である。まず、オンラインの計測管理において、多くの代用特性と目的特性との関係を把握し、計測すべき特性を明らかにする。次に、多くの成形加工要因
の中から最適加工条件を設定するための、工条件のパラメータ設計を行う必要がある。また、オンラインの計画管理においては、工床中の成形品の特性の変動を早く、かつ正確に検出し、工条件へフィードバックすることである。現在の成形加工では、工床中の成形品の計測と、その結果を工条件へフィードバックするまでの時間が長く、こうした計測による時間の遅れ成形品のばらつきを増大させている。

4. 経済性を考慮した寸法許容差の決め方

4.1 寸法許容差の決め方

規格中心値が決まったあとで、許容差をどの程度にするか、製品の特性値が規格中心値からばらつくことによって生じる経済的な損失と、製品コストのバランスにより決定するのが合理的である。製品の特性値が規格中心値に対して相違することによって生じる経済的損失Lは

\[L = k(y - m)^2 \]

（1）

で表される。式（1）は製品の特性が許容差内であっても損失が発生することを示している。また、特性値yが規格中心値があったとしても、ユーザが使用中に劣化等の原因により、特性値yがmから\(\Delta_0 \)ずれてしまうならば製品は正しく機能しなくなり、製品を買い換えたり修理することになる。そのときの費用を\(A_0 \)円とすれば、式（1）の比例定数kは

\[k = \frac{A_0}{\Delta_0^2} \]

（2）

によって求められる。\(A_0 \)が簡単に入れ換えられない場合には、製品がユーザの段階で劣化し50%が機能しないする\(\Delta_0 \)をあらかじめ実験等によって求めておく。

ユーザの使用段階における製品の特性値yの許容範囲は\(\pm \Delta_0 \)であっても、ユーザにおける許容差は\(\pm \Delta_0 \)より小さいのが普通である。それは、ユーザでは特性値が規格中心値からずれてても工床の中で比較的簡単に修正可能だからである。ユーザにおいて、特性値yが目標値mより\(\Delta_0 \)ずれたことによって、その製品を廃棄あるいは修正したときのコストが\(A_0 \)円だったとすると、式（1）の式に\(A_0 \)を代入し、\(\Delta = |y - m| \)について解くと

\[A = k(y - m)^2 = \frac{A_0}{\Delta_0^2} \times \Delta^2 \]

（3）

を得る。それより

\[\Delta = \frac{\sqrt{A}}{A_0} \times \Delta_0 \]

（4）

を得、経済性を考慮した寸法許容差が決定できる。工条件が不十分で、式（4）で求めた許容差を現実に実現できない場合には、右辺の\(A \)に不良品を作ったときの損失の代わりに、その値を良品率\(q \)で割り

\[\Delta = \pm \frac{\sqrt{A}}{A_0} \times \Delta_0 \]

（5）

とする。ここで\(q \)は\(\Delta \)の関数\(q(\Delta) \)である。もし、製品の特性値\(y \)が正規分布でその平均が規格中心値\(m \)、標準偏差が\(\sigma \)のときには、\(q(\Delta) \)は次式で与えられる。

\[q(\Delta) = \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi} \sigma} e^{-\frac{(y - m)^2}{2\sigma^2}} dy \]

\[= \int_{-\infty}^{\Delta_0} \frac{1}{\sqrt{2\pi} \sigma} e^{-\frac{t^2}{2\sigma^2}} dt \]

（6）

従って、工条件が十分でない場合の許容差\(\Delta \)は

\[\Delta = \pm \frac{A}{\sqrt{A_0 \times q(\Delta) \times \Delta_0}} \]

（7）

によって求めることができる。工条件が十分でない場合には、まず工条件を上げる努力が必要であり、計測管理で解決すべき部分は多い。先に述べたようにオンライン計測管理でのパラメータ設計、計測誤差の改善、オンライン計測管理における計測時間の短縮、工条件特性の計測と制御等が重要な項目としてあげられる。

4.2 組立品の許容差

組立品の許容差の場合は、システム全体の許容差を与える。次いでシステムを構成する各要素に許容差を分配する方法が取られることがある。しかし、この方法は以下の理由により一般的には正しくないといえる。

システム全体の許容差を\(\pm \Delta_0 \)、システム全体が不合格になったときの損失を\(A_0 \)、システムを構成する要素を\(n \)個とし、それぞれ\(x_1, x_2, \ldots, x_n \)とする。\(x_i \)の許容差を\(\pm \Delta_i \)、\(x_i \)が単位変化したときのシステム全体への影響を\(\beta_i \)、要素\(x_i \)が不合格になったときの損失を\(A_i \)とすれば許容差\(\Delta_i \)は

\[\Delta_i = \sqrt{A_i \times \Delta_0 \over \beta_i} \]

（8）

であり、個々の要素の許容差を合成すると

\[\sum_{i=1}^{n} \beta_i \Delta_i \leq \sum_{i=1}^{n} \beta_i \times \left(\sqrt{A_i \times \Delta_0 \over \beta_i} \right)^2 \]

\[= A_1 + A_2 + \cdots + A_n \times \Delta_0^2 \]

（9）

となる。従って

\[A_1 + A_2 + \cdots + A_n = A_0 \]

（10）

のときにのみ公差配分は正しい。つまり、式（10）以外は個々の要素別に許容差を求める。
5. 経済性寸法許容差と実態
寸法許容差の関係

プラスチック成形品の寸法許容差と経済性の関係を求めるため、アンケートより以下の設問に対する回答を得た。
(1) 成形品名、検査項目、基本寸法（規格中心値）及び図面公差。
(2) 成形品が製品に組み込まれた内容で不良が発見された場合、交換、手直しあるいは廃棄などによって目標とする品質を確保するのに必要な費用。
(3) 本調査対象の成形品を組立てた製品が、消費者の段階で製品としての機能を満足しないのほぼ限界の値。
(4) 使用者が、本調査対象の成形品を使用中、その機能限界を超え故障が発生した場合の損失（部品交換、廃棄の費用、修理料、販売料、持込み料、使用者が手持る手間などを考慮して決定）の程度。
これらの回答を基準に経済性を考慮した合理的な許容差の算出を試みた。但し、工程能力が不十分で求めた許容差に対して不良品が多く発生する場合についての検討は省略したが、不良率が高くおおよそ50%程度となると式（7）で求めた許容差は、式（4）より求めた本来の許容差の約1.4倍となる。
アンケート結果の中から（1）〜（4）に相当する部分と、計算によって求めた経済性寸法許容差の一部を表1に示す。表1よりメーカ側の許容差（実態寸法許容差）と経済性寸法許容差との関係を求める結果が図7である。両者が一致していれば破線で示した45°の線上にプロットされ、実態寸法許容差が計算値に比べてややばらつく破線の下側に、逆にきつければ破線の上側にプロットされることになる。図中の記号は基本寸法の分類を示し、基本寸法が大きくなると許容差も大きくなり、ゆるやかな関係は認められる。また、図中の数値は基本寸法と許容差との割合を示している。しかし、これらの分類からも現状の許容差と計算値が対応していない部分の説明は明確でない。

表1 寸法許容差に関するアンケートの一部

<table>
<thead>
<tr>
<th>No.</th>
<th>機能</th>
<th>規格中心値（mm）</th>
<th>生産者側が求めた許容差（mm）</th>
<th>生産者側の損失A（円）</th>
<th>出荷先における使用限界値Dₐ（mm）</th>
<th>出荷先での平均損失Dₐ（円）</th>
<th>本規格により求めた許容差Dₐ（mm）</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>外径</td>
<td>6.11</td>
<td>0.015</td>
<td>30</td>
<td>0.08</td>
<td>5000</td>
<td>0.006</td>
</tr>
<tr>
<td>2</td>
<td>外径</td>
<td>3.95</td>
<td>0.040</td>
<td>30</td>
<td>0.11</td>
<td>5000</td>
<td>0.009</td>
</tr>
<tr>
<td>3</td>
<td>内径</td>
<td>3.00</td>
<td>0.010</td>
<td>150</td>
<td>0.05</td>
<td>5000</td>
<td>0.009</td>
</tr>
<tr>
<td>4</td>
<td>内径</td>
<td>4.90</td>
<td>0.050</td>
<td>500</td>
<td>0.03</td>
<td>2000</td>
<td>0.015</td>
</tr>
<tr>
<td>5</td>
<td>極</td>
<td>302.00</td>
<td>0.500</td>
<td>100</td>
<td>0.08</td>
<td>1000</td>
<td>0.025</td>
</tr>
<tr>
<td>6</td>
<td>極</td>
<td>39.00</td>
<td>0.050</td>
<td>40</td>
<td>0.26</td>
<td>3000</td>
<td>0.030</td>
</tr>
<tr>
<td>7</td>
<td>長さ</td>
<td>100.00</td>
<td>0.05</td>
<td>10</td>
<td>0.10</td>
<td>500</td>
<td>0.014</td>
</tr>
<tr>
<td>8</td>
<td>長さ</td>
<td>8.8</td>
<td>0.025</td>
<td>2000</td>
<td>0.20</td>
<td>5000</td>
<td>0.126</td>
</tr>
<tr>
<td>9</td>
<td>ビッチ</td>
<td>69.80</td>
<td>0.01</td>
<td>300</td>
<td>0.30</td>
<td>10000</td>
<td>0.052</td>
</tr>
<tr>
<td>10</td>
<td>ビッチ</td>
<td>45.00</td>
<td>0.05</td>
<td>160</td>
<td>0.15</td>
<td>1600</td>
<td>0.047</td>
</tr>
<tr>
<td>11</td>
<td>振れ</td>
<td>0</td>
<td>0.05</td>
<td>100</td>
<td>0.10</td>
<td>3000</td>
<td>0.018</td>
</tr>
<tr>
<td>12</td>
<td>振れ</td>
<td>0</td>
<td>0.10</td>
<td>300</td>
<td>0.15</td>
<td>3000</td>
<td>0.047</td>
</tr>
</tbody>
</table>

図7 実体寸法許容差と経済性寸法許容差との関係

計算法と現状の許容差がほぼ対応していると考えられる45°の線上の2倍及び1/2倍の幅を除いた部分の斜線を引き、その範囲を示した。図より明らかにした通り、許容差の大きい所では経済性寸法許容差と実態寸法許容差はほぼ対応している。しかし、許容差の厳しい±15〜20μm付近で実態寸法許容差はほぼ限界に達するが、経済性寸法許容差は減少しつつある。これは図6に示した通り通常の加工限界と計測限界が±20μm程度であることを対応していると考えられる。結局、経済性寸法許容差の立場からは許容差を小さくすべきだが、加工技術の面で追いつかないことを示唆している。
こうした場合の対策は、すでに述べたように、工程能力を上げる努力が重要であるが、それまでの間、式（7）により許容差を決めることになる。

つまり、工程能力の関係で、仮に成形品の不良率が50% と大きければ本来の式 (4) で求めた許容差の約1.4倍する。しかし、1.4倍に許容差を広げても工程能力は従来通りであるから成形品の不良率は30％も存在する。こうした意味からも、基本的には工程能力を上げることが先決である。

以上のことから考えて、45°の線の上下にプロットされた点の割合と、アンケート調査結果の意識のずれについては次のように思われる。工程能力が高ければ、結果として実態寸法許容差を小さく設定することが可能（4％）であり、この場合回答者の立場から得られるのが望ましい与判断（5％）と考えられる。一方、現状の工程能力が低く適正な寸法許容差を実現できない場合（60％）には、回答者は工程能力と考え合わせて厳しいと判断（30％）していると思われる。こうした解釈に立てば、アンケートの結果はきわめて妥当であると判断できる。

6. 結論

プラスチック成形品の寸法許容差について、アンケート調査を実施し、現状の寸法許容差の実態を把握すると共に、経済性を考慮した寸法許容差との対応について明らかにし、以下の結論を得た。

（1） 基本寸法と許容差はほぼ比例関係にあるが、成形品の目的機能とも関係が深い。
（2） 現実に定められている実態寸法許容差が、経済性（コスト、品質、性能等）を考慮して決めているとの判断は30％と少ない。
（3） 実態寸法許容差と経済性寸法許容差とは精度の低い所で一致し、精度の高い所で相違していることから考え、成形の加工能力に関係していると判断できる。
（4） 現状における成形加工の限界は、ほぼ±15～20 μm 程度と考えることができる。

参考文献

1）日本工業規格 JIS K 7109：プラスチックの寸法許容差の決め方（1986）。
2）矢野 宏、小池昌義、杉山 昭：成形加工におけるオンライン計測管理、計量管理（1982）。
3）松川孝雄、松田次郎、矢野 宏：射出成形品の水冷法による寸法管理（I, II, 合成樹脂、30、6、8）（1984）。
4）田口玄一：品質工学のための実験計画法 I、精密機械、51、4（1985）762。
5）田口玄一：規格値の決め方、日本規格協会（1984）。