光ヘッド位置決め技術

前田 武志

Positioning Technology of Optical Head / Takeshi MAEDA
Key words : optical disk, digital optical disk, access method, head positioning, servomechanism

1. 概 况
現在実用化されている光ディスクは、入力情報によって分類できる。画像、音声情報を入るビデオディスク、コンパクトオーディオディスク、コード情報を入るディジタル光ディスクである。本章では特に高速の位置決め装置が必要とするディジタル光ディスクのアクセス制御を中心に概説する。

ディジタル光ディスクは従来のファイル装置と比較して、トラックピッチが1〜2μmと狭く、可換媒体であることから偏心量が約50μmとトラックピッチより大きい。このことから第一世代のアクセス方式としては図1に示すような2段階のシーク方式が採用されていた。これは光ヘッド全体を外部に設けたスケールによって制御し、目標トラック近傍に一度位置決め（マクロシーク）、その後近傍のトラックに引き込み、アドレスを読み取り、目標トラックまでトラック数えながら光スポットを移動させる（ミクロシーク）ものである。
この方式の問題点として、以下のことが挙げられる。

① 可動部であるヘッド重量が大きくなるため、マクロシーク時間が长くなる。
② ミクロシークにおける移動量が偏心等により大きくなり、ミクロシークの時間が長くなる。
③ マクロからミクロシークへの切替え時間が長くなる。

このような問題を解決するために種々のアプローチで現在実用化が行われている。

2. 現状の開発状況

以下上記問題点に沿って開発状況を述べる。

(1) 問題点①については可動部重量を軽くすることにより移動加速度を大きくする。
 (a) 光学ヘッドを分離して可動部品を少なくし、軽量化を図る。
 (b) 光ヘッド一体型でも全体を軽量、小型にする。

(2) 問題点②、③については直接トラックを数えながら目標トラックまで1段階で移動する。
 (c) トラックを光スポットが通過する本数（方向）を計測する（クロストラックカウンント）。
 (d) 速度制御帯域を向上させて安定に目標トラックに位置決めさせる。

図1 2段階シーク方式の動作

* 原稿受付 昭和63年10月7日
** (株)日立製作所（国分寺市東染1-280）
(3) 問題点 (2), (3) について、2段階シーク方式に
新技術を導入して高速化する。
(e) マクロシークで直接トラックに位置決めす
るため、外部スケールとクロストラックカウン
トの2つの信号を使用し、引き込み時にはコース
アクチュエータとファインアクチュエータを運
動させる9)。
(f) マクロシークにおいて、偏心するトラック
に対する光ビームの相対速度を制御することに
より1回でシークを完了する9)。
(g) マクロシークにおいてBang-Bang駆動電
流切替え点を最適化することにより制御誤差を
少なくする9)。

3. 具体例
アクセ制御機能の観点か
ら、具体的な開発状況を以下に
述べる。
3.1 検出部
トラックカウン特を行うため
にはトラックずれ信号を用い
る。これを検出す方式として
前章に述べられているように連
続案内溝を用いたブッシュプル
方式と不連続ビットを用いたサ
ンプルサーボ方式がある。
そこで、連続案内溝からクロ
ストラック信号を検出するため
には図2のようにトラックずれ
信号とこれと位相が90°ずれたディスクからの反射光
量を示す信号（データ信号）を用いる方法が採用され
ている10)。
さらに、信号の品質を向上させるため種々の改善が
なされている9)。
また、不連続ビットからクロストラック信号を検出
するためには図3のようにトラックずれ検出用のベア
ビットの1つをシーク方向に16トラック（1つの
ゾーン）ごとにオフセットさせ、シーク中にこれを認
識する方式が採用されている10)。これはゾーンごと
の分解能しかないのでトラックを1本ずつ認識するた
め、ゾーンのなかのトラックにそれぞれ異なったプリ
ビットパターンを設けることが提案されている11)。
3.2 機構部
小型のディジタル光ディスクの装置性能を向上させ
るための方式として図4に示す分離型光学ヘッド（フ
ライングヘッド）が提案されて以来、現状ヘッドで高
速化をねらうための1つの重要なアプローチとなっている。
最近の具体例として、以下のものがある。コースア
クチュエータとしてリニアモータを用い、可動部である焦点制御用アクチュエータ、トラッキング用アクチュエータを従来に比較して大幅に小型、軽量化し、シーク時間も短縮している12)。また、図5にあるように、コースアクチュエータとしてスイングアームを用い、トラッキング用のアクチュエータを固定ヘッド側に関し、可動部は対物レンズとその支持機構のみにして軽量化を図り、現状で最短のシーク時間が5"ディスクで28ms)を実現している13)。

3.3 制御方式

図6にシーク時の移動時間と光スポットの速度との一般的な関係を示す。ビデオマが他のファイル装置のシーク動作に比較して特徴的なのは、目標トラックに引き込む速度制御、及び位置制御の周期である。

すなわち、外乱、加減速加速度が大きいのに対して、検出範囲が±0.4μmと狭く、かつ位置決め精度が0.1μm以下で厳しいため、トラック位置決め開始速度を数mm/s以下にしなくてはならない。これのために以下の制御方式が考案されている。

（1）速度制御の高帯域化：図7のように、コースアクチュエータの速度制御帯域を上げるために、クロストラック信号とコースアクチュエータの駆動電流を用いて光スポットの移動速度を推定（オブザーバ）し、クロストラック信号のみの制御で得る速度が検出し遅れによる制御帯域の制限を取り除いている6)

（2）速度制御の高速化：従来方式では制御帯域がアクチュエータの機械共振で制限され、推力が生かされていなかった。そこで、図8のように摩擦、外乱を打ち消す補正電流を流すとともに、発生力の変動に対応して駆動電流の切替え点を最適なブラグのBang-Bang制御を行う。テストアクセスにより最適な補正電流と切替え位置をあらかじめ求めており6)。

（3）位置制御の高性能化：可動範囲が大きいが応答が良くないコースアクチュエータと可動範囲が狭いが応答性の良いファインアクチュエータを図9のように連動して制御する3段トラッキング制御系はほとんど採用されている1113)～18)。この方式によって、光スポットの可動範囲が大きく、制御帯域が広がった制御系を実現している。

4. 今後の動向

現在の光ヘッドを見ると光学部品の小型化が先行し、アクチュエータ等の機構部の小型化が進んでいる。現在状態の改良では不足の問題の解決は困難と思われる。この部分に精密工学の新しい知見を入れた大幅
図8 学習型Bang-Bang制御の構成と動作
（中西浩ほか，論文・書籍互換をめざした高速光ディスク，信学技報（磁気記録），MR 86-34，1986，p.23より引用）

図9 2段トラッキング制御系の構成
（前田武志ほか，高2段アクチュエータ制御方式，光メモリシンボジウム’85論文集，1985，p.190より引用）

参 考 文 献

1) 前田武志，角田義人，堤善治：デジタル光ディスク装置の開発，電子通信研究学会技術研究報告（画像記録），IE 83-71（1983）。
2) 前田武志，村岡幸治，中村英，賀来敏光：小型光ディスク用アクチュエータ分離ヘッド，第46回応用物理学会学術講演会講演論文集，13 a-E-5（1984）。
3) 市原勝一：高速アクセス光ディスク装置の試作，昭和60年度精密工学会春季大会学術講演会講演論文集（1985）667。
4) 前田武志，笠井隆雄，角田義人：光ディスクスプレッド装置におけるアクセス方式，昭和58年電子通信学会総会全国大会予稿集（1983）1022。
5) 守屋昭弘，中田光史，金丸俊次：光ディスクのトラックアクセス方式，昭和58年度電子通信学会総会全国大会予稿集（1983）1210。

6) 小川雅晴，仲津啓，林成男，伊藤修，渡辺勢大，田中邦幸：光ディスクメモリの高速アクセス方式，光メモリシンボジウム’86論文集（1986）191。
8) 中西浩，渡辺昌憲，山本学，山崎裕基，原臣司：連続・書替互換をめざした高速光ディスク装置，電子通信学会技術研究報告（磁気記録），MR 86-34（1986）。
9) 菅藤直，前田武志，賀来敏光，角田義人：ピックホールド方式によるトラッキング特性の改善，第47回応物物理学会学術講演会講演予稿集，30 a-ZE-6（1986）。
10) American National Standard : 130 mm Optical Media Recorded Format Tracking and Servo Technique 1st DRAFT, X 3 B 11/86-190, (1986)。
11) 同上，X 3 B 11/87-082（1987）。
12) 前田正司，吉住枝，辻三起，今中良一：光ディスク用高速アクセスアクチュエータ（1），第46回応用物理学研究会講演予稿集（1985）113。
14) 下生茂，稲田博男，木村正：光ディスク装置用サーボトラッキングシステムの設計，昭和58年電子通信学会総会全国大会予稿集（1983）1605。
15) 小沢靖之，森江正春，二見彰男，市原勝一：二重サーボトラッキング方式の理論的検討，光メモリシンボジウム’85論文集（1985）195。
16) 小川雅晴，伊藤修，林成男，久保浩文：光ディスクメモリの2個結合法方式，光メモリシンボジウム’85論文集（1985）203。

—18—