エリート主義を用いた遺伝アルゴリズムのラインバランス問題への適用*

倉重賢治** 宮崎茂次*** 亀山嘉正**

Key words: genetic algorithm, line balancing, balance delay, positional weight

1. はじめに

生産ラインの設計において、効率的な編成を行うためには、遊休時間をできる限り小さくする必要があり、この評価の基準としてバランス遅れが定義されている。この問題に対する組合せの数は、作業数の増加とともに指数的に増大し、計算時間が大きくなりすぎる懸念が生じている。一方、組合せ問題に対する近似解法として、遺伝アルゴリズムが存在し、現在までに多くの適用例が報告されている11)。これらの多くは、適応度の高い個体の構成要素を次世代に残し、適応度の低い個体を淘汰していくことで進化を行っている。確かに、適応度の低い個体は、最適解になる可能性が低いので淘汰されていくことは合理的な考えである。しかし、適応度が低くても、部分的には良好な性質を持ち合わせていて、別の個体の適応度を更新させる可能性は否定できない。さらに、現実の生態系では、適応度の低い個体が多数を占めており、ピラミッド構造の食物連鎖においても、多数の弱者が少数の強者を支えている。このような構造は、人間社会でも多くみられ、一部のエリート育成の目的に限定するならば効果的なシステムである。

本研究では、これらのシステムを模倣し、最適解の候補となるべきエリートの個体と、エリートの評価値を更新させるためにだけに生存する非エリートの個体に分け、これらの個体間で交又を行う遺伝アルゴリズムを提案し、ラインバランス問題への適用を試みた。

2. ラインバランス問題

本研究で扱う問題は、単一品種で単作業数N、ワークステーション数W、各作業の作業時間と先行関係がそれぞれ与えられており、式(1)のバランス遅れの最小化を目指す。ワークステーション数Wが一定のものとすれば、最小のサイクルタイムを求める問題となる。

\[BD = \sum_{i=1}^{N} \left(p_{\text{max}} - t_i \right) \times \frac{W \times p_{\text{max}}}{N} \times 100 \]

ただし、

\(t_i \): 作業 i の作業時間
\(p_{\text{max}} \): ステーションタイムの最大値

3. エリート主義を用いた遺伝アルゴリズム

3.1 本研究のアルゴリズム

本研究では、作業数 N のあらかじめ設定されたエリート数を用い、残りの個体は、エリートの個体を更新させるためだけに存在する非エリートとする。本研究のアルゴリズムの概要は以下に示す。

Step1 探索世代数 G。エリートの個体数 E と非エリートの個体数 U を設定する。

Step2 \(g = 0 \) とおく。初期個体として、ランダムに E + U 個の個体を作成し、それぞれ評価値を計算する。

Step3 上位 E 個の優れた評価値の個体をエリートとする。

Step4 \(g = g + 1 \) とする。エリートは、すべての非エリートと交又(3.3参照)を行う。

Step5 すべての非エリートは、突然変異(3.4参照)を行う。

Step6 \(g = G \) なら終了。\(g < G \)ならStep2に戻る。

3.2 個体の表現法

遺伝子座はワークステーションを、遺伝子の値は、すでに割り当てられた作業の組合せを表現する。ここで、個体 m (1, ..., E + U) の遺伝子座 k (1, ..., W)の遺伝子座の値 \(\text{gene}_{m,k} \)は式(2)のように定義する。

\[\text{gene}_{m,k} = \text{gene}_{m-1,k} + \sum_{i=1}^{N} 2^{i} \times x_{i} \]

ただし、

\(x_{i} \): 第 k ウェークステーションに作業 i が割り当てられるなら 1、割り当てられてなら 0 とする。

具体的例を図1に示す。図1の左側は、3つのワークステーションに1~6の作業が割り当てられていることを示している。また、第1ワークステーションには作業1, 3が割り当てられているので、遺伝子の値は10(=2*2*2)となる。第2番目は30(=10+2*2*2), 第3番目は126(=30+2*2*2)となる。

3.3 交又

図2は、それぞれ異なる作業の割り当てを示しているが、点線で囲まれた部分の作業配置は、共に(4, 5, 6)であり、その部分を入れ替えたことは可能である。仮に、あるエリート体非エリートが複数のワークステーション間で同一の作業を有し、対象群のステーションタイムの最大値は、非エリートの方が小さい場合、エリートはそれらの部分を取り込む。本研究では、これらの操作を交又と呼ぶ。この作業割り当ての更新は、エリートについてのみ行う。なぜなら、エリートに類似の作業割り当てが必要以上に広がるのを防ぐためである。

\[W=3 \]
\[N=6 \]

\[\begin{array}{cccccc}
1 & 2 & 3 & 4 & 5 & 6 \\
3 & 5 & 10 & 30 & 126 \\
\end{array} \]

Fig.1 An example of value of gene

* 原稿受付 平成8年12月9日
** 正 会 員 岡山県立大学（総合都市横木 111）
*** 正 会 員 岡山大学（岡山市総合政策4-1-1）

1410 精密工学会誌 Vol. 63, No. 10, 1997
任意の個体 a, b に対する交差のアルゴリズムを以下に示す。ちなみに、1 世代あたり $E 	imes U$ 回の交差が行われる。
Step1 $gene_a = 0$, $gene_b = 0$, $k = W - 1$ とおく。
Step2 $k = 1$ から終了。それ以外なら $i = k$ とする。
Step3 $j = i - k$ とする。
Step4 $A = gene_{a_j} - gene_{b_i}$, $B = gene_{b_j} - gene_{a_i}$ として、$A = B$ かつワークステーション $j + 1$ ～ i の作業割り当

任意の個体 a, b に対する交差のアルゴリズムを以下に示す。ちなみに、1 世代あたり $E 	imes U$ 回の交差が行われる。
Step1 $gene_a = 0$, $gene_b = 0$, $k = W - 1$ とおく。
Step2 $k = 1$ から終了。それ以外なら $i = k$ とする。
Step3 $j = i - k$ とする。
Step4 $A = gene_{a_j} - gene_{b_i}$, $B = gene_{b_j} - gene_{a_i}$ として、$A = B$ かつワークステーション $j + 1$ ～ i の作業割り当

3.4 突然変異

本研究における突然変異とは、非エリートの作業割り当ての

4.1 条件設定

数値計算

Table 1 Average balance delay(%) and CPU time(s)

<table>
<thead>
<tr>
<th>N</th>
<th>W</th>
<th>BD</th>
<th>CPU time</th>
<th>BD</th>
<th>Genetic algorithm</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>5</td>
<td>3.81</td>
<td>0.01</td>
<td>2.72</td>
<td>1.28</td>
</tr>
<tr>
<td>50</td>
<td>5</td>
<td>3.32</td>
<td>0.01</td>
<td>2.28</td>
<td>1.51</td>
</tr>
<tr>
<td>10</td>
<td>8</td>
<td>6.39</td>
<td>0.01</td>
<td>4.91</td>
<td>1.84</td>
</tr>
<tr>
<td>10</td>
<td>13</td>
<td>8.13</td>
<td>0.01</td>
<td>6.94</td>
<td>2.31</td>
</tr>
<tr>
<td>15</td>
<td>5</td>
<td>3.32</td>
<td>0.01</td>
<td>2.28</td>
<td>1.51</td>
</tr>
<tr>
<td>10</td>
<td>6.57</td>
<td>5.71</td>
<td>0.01</td>
<td>5.51</td>
<td>2.74</td>
</tr>
<tr>
<td>15</td>
<td>9.62</td>
<td>8.37</td>
<td>0.01</td>
<td>8.37</td>
<td>3.77</td>
</tr>
<tr>
<td>10</td>
<td>5.64</td>
<td>4.63</td>
<td>0.02</td>
<td>4.63</td>
<td>3.18</td>
</tr>
<tr>
<td>15</td>
<td>8.64</td>
<td>7.52</td>
<td>0.02</td>
<td>7.52</td>
<td>4.52</td>
</tr>
<tr>
<td>20</td>
<td>11.52</td>
<td>10.93</td>
<td>0.02</td>
<td>10.93</td>
<td>6.48</td>
</tr>
</tbody>
</table>

Fig. 2 An example of replace of elements

Fig. 3 Average number of update in each problem

5. おわりに

本研究では、最適解の可能性をもつエリート個体と、エリートを更新させるために存在する非エリート個体に分けて

参考文献

3) 北野文明 (編): 遺伝的アルゴリズム, 産業図書 (1993) 3-39

4) 北野文明 (編): 遺伝的アルゴリズム 2, 産業図書 (1995) 3-124

精密工学会誌 Vol. 63, No. 10, 1997 1411