Magnetic Properties of Itinerant Ferromagnet LaCo$_2$P$_2$

M. IMAIa, C. MICHIOKAa, H. OHTA b, H. UEDA a and K. YOSHIMURAa

a Graduate School of Science, Kyoto University, Kitashirakawa Oiwake town, sakyo-ku, Kyoto 606-8502, Japan
b Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei 184-8588, Japan

Abstract

We synthesized a single crystalline sample of LaCo$_2$P$_2$ and measured its magnetization. We estimated parameters of spin fluctuations from Arrott plots and M^4-H/M plots by using Takahashi’s itinerant-electron theory of spin fluctuations. From these plots, the magnetic properties of LaCo$_2$P$_2$ have been found to agree with the Takahashi’s itinerant-electron theory.

Key Words: Itinerant electron, Ferromagnet, Layered pnictide, Magnetization

I. INTRODUCTION

Many layered compounds with ThCr$_2$Si$_2$ type structure have been discovered and found to various physical properties such as superconductivity and magnetic ordering. Iron or nickel based pnictides have been found to exhibit the exotic superconductivity [1, 2]. On the other hand, though cobalt is between iron and nickel in the periodical table, cobalt-based pnictides do not show any superconductivities but show various magnetic orderings, e.g. ACo$_2$P$_2$ ($A =$ alkaline earth metals, rare earth metals) is itinerant antiferromagnetic, itinerant ferromagnetic or Pauli paramagnetic depending on A [3-5]. In ACo$_2$P$_2$, the Co$_2$P$_2$ layers formed of edge-sharing tetrahedral CoP$_4$ and A layers are stacked alternately along the c-axis. The distance between neighboring Co$_2$P$_2$ layers can be controlled by changing the A cation. In the case of $A =$ Ca, Ce, a strong P-P interaction exists between neighboring Co$_2$P$_2$ layers and electronic structures are of three-dimensional characters rather than two-dimensional. In this case, a ferromagnetic ordered Co$_2$P$_2$ layers stack antiferromagnetically [5, 6]. In the case of $A =$ La which has a large atomic radius, the P-P interaction is weaker and its electronic structure has two-dimensionality. In addition LaCo$_2$P$_2$ exhibits an itinerant ferromagnet where Co moments lie in the Co$_2$P$_2$ layer [4]. In LaCo$_2$P$_2$, the intralayer interaction is ferromagnetic.

As a theoretical approach of itinerant electron magnetic compounds, the self-consistent renormalization (SCR) theory of spin fluctuations succeeded in clarifying the nature of nearly and weakly itinerant (anti-)ferromagnetic systems [7-9]. After that, Takahashi developed the SCR theory by assuming a conservation of the total amplitude of sum of zero point and thermal spin-fluctuations against temperature [10]. With Takahashi’ theory, we can estimate parameters of spin fluctuations from only the static magnetization process in the case of an itinerant ferromagnet. To study the ACo$_2$P$_2$ system from the view point of spin-fluctuations, we synthesized single crystals of LaCo$_2$P$_2$ and investigated their magnetizations.

II. EXPERIMENTAL

Single crystals of LaCo$_2$P$_2$ ware prepared from tin flux method [11]. The mixtures with the atomic ratio of La:Co:P:Sn = 1.6:2.0:2.0:15 were sealed in evacuated silica tubes and heated at 1273 K for 2 days and then slowly cooled to 873 K at 4 K/ min. The excess tin was dissolved in dilute HCl. Plate-like single crystals were obtained with a typical size of $0.3 \times 0.3 \times 0.01$ mm. The electrical resistivity along the a axis was measured by a standard dc four-probe method. X-ray powder diffraction analysis confirmed that samples are in pure single phase. Magnetizations (M) of LaCo$_2$P$_2$ were measured as functions of temperature (T) and magnetic field (H) by using MPMS (Quantum Design Inc.). With the magnetic field applied along a or c axis, the M vs H curves were measured with decreasing H from 7 to 0 T.

III. RESULTS

The resistivity ρ decreases with decreasing temperature and drops at 133 K as shown in Fig. 1. The residual resistivity ρ_0 and the residual resistivity ratio (RRR) are 0.41 μΩ cm and 190, respectively, reflecting the high quality of the single crystals. In the low temperature region $\rho(T)$ can be well fitted to the function $\rho(T) = \rho_0 + AT^2$ as shown in the inset of Fig.1. In the SCR theory, resistivity of itinerant ferromagnet is proportional to T^2 at low temperature region. In two dimensional or three dimensional ferromagnetic metal, $\rho(T)$ obeys $-T^{4/3}$ or $-T^{5/3}$ above T_C. In the case of LaCo$_2$P$_2$, $\rho(T)$ has
Magnetic Properties of Itinerant Ferromagnet LaCo$_2$P$_2$

The resistivity ρ of LaCo$_2$P$_2$ is shown in Figure 1. The inset shows the resistivity against T^2.

Figure 2 shows isothermal magnetization (M) curves measured at 2 to 300 K for single crystals of LaCo$_2$P$_2$ with the magnetic field H parallel to the a and c axes. The magnetization quickly tends to saturate in H parallel to a. On the other hand, saturation fields are much larger in H parallel to c. This compound has large magnetic anisotropy, therefore we only used magnetization curves in H parallel to a in the following analysis. The magnetization with zero field M_0 and the Curie temperature T_C are determined from the Arrott plots ($M(T, H)^2$ vs $H/M(T, H)$ plots). According to the Landau theory, the free energy (F) can be expanded by the order parameter. Here, the magnetic field H is defined by $H = \partial F/\partial M$, and written as

$$H = a(T)M(T, H) + b(T)M(T, H)^3 + c(T)M(T, H)^5 + \ldots,$$

where $a(T)$, $b(T)$, and $c(T)$ are coefficients at finite T. With neglecting sixth and higher power terms of $M(T, H)$, the equation (1) is transformed as

$$M(T, H)^2 = -a(T)/b(T) + 1/b(T) \cdot H/M(T, H) = M_0(T)^2 + 1/b(T) \cdot H/M(T, H).$$

From Arrott plots, therefore, T_C, M_0 and the susceptibility χ are determined as the temperature where M_0 becomes zero, intercepts of M^2 and H/M axes. According to Takahashi’s theory of spin fluctuations [10], F_1 is the normalized coefficient of M^4 terms in the Landau expansion of free energy, which can be written as

$$F_1 = 4T_C^2/15T_0,$$

with spin-fluctuation parameters. Here, T_0 and T_A are the energy width of the dynamical spin-fluctuation spectrum and the dispersion of the static magnetic susceptibility in the wave vector q-space, respectively. In addition to the equation (3), the SCR theory leads to the following relation:

$$T_C = (60c)^{1/4} P_s^{3/2} T_A^{3/4} T_0^{-1/4},$$

where c and P_s are a constant approximately equal to 0.3353 and the spontaneous magnetization in the ground state, respectively [7]. We can estimate T_0 and T_A by the equations (3) and (4). Figure 3 shows Arrott plots and M^4 vs H/M plots for single crystals of LaCo$_2$P$_2$ for H parallel to a-axis. In the low temperature region, M^2 shows a good linearity under high magnetic field and F_1, T_0 and T_A can be estimated as 1.26×10^4 K, 914 K and 6.58×10^3 K, respectively. In the vicinity of T_C, however, the Arrott plots show convex curvature. According to the Takahashi’s theory [10], the sixth term of the free energy is dominantly effective to the magnetization process around T_C. In this theory, second and fourth power terms are zero at T_C, thus the magnetization obeys following relation:

$$M^4 = 1.17 \times 10^{10}(T_C^2/T_A^*)(H/M),$$

where T_A^* is the T_A estimated from M^4 vs H/M curve at T_C. Here, M and H are expressed in units of emu/mol and Oe, respectively. Therefore, we can check the consistency between experimental results and Takahashi’ theory of spin...
fluctuations with comparing T_A and T_A^*. The M^4 vs H/M curve at $T_C=133$ K shows good linearity as shown in Fig. 3(b).

We obtained T_A^* as 6.41×10^3 K from the value of the slope, which is quite similar to $T_A=6.58 \times 10^3$ K. Our results have been found to agree with Takahashi’s theory of spin fluctuations.

IV. CONCLUSION

We synthesized single crystals of LaCo$_2$P$_2$ and measured their magnetizations. In the vicinity of T_C, Arrott plots were found to show convex curvature and M^4 vs H/M plots to show a good linearity. From these plots, T_A was cross-checked and confirmed its consistency. Our results were found to show a good agreement with Takahashi’s theory of spin fluctuations.

ACKNOWLEDGMENTS

This work is supported by Grant-in-Aids for Scientific Researches 22350029 and 23550152 from the Ministry of Education, Culture, Sports, Science and Technology of Japan. This work was partially carried out using facilities of Research Center for Low Temperature and Materials Sciences, Kyoto University.

REFERENCES

fluctuations with comparing T_A and T_A^*. The M_4 vs H/M curve at $T_C = 133$ K shows good linearity as shown in Fig. 3(b).

We obtained T_A^* as 6.41×10^3 K from the value of the slope, which is quite similar to $T_A = 6.58 \times 10^3$ K. Our results have been found to agree with Takahashi’s theory of spin fluctuations.

IV. CONCLUSION

We synthesized single crystals of LaCo$_2$P$_2$ and measured their magnetizations. In the vicinity of T_C, Arrott plots were found to show convex curvature and M_4 vs H/M plots to show a good linearity. From these plots, T_A was cross-checked and confirmed its consistency. Our results were found to show a good agreement with Takahashi’s theory of spin fluctuations.

ACKNOWLEDGMENTS

This work is supported by Grant-in-Aids for Scientific Research es 22350029 and 23550152 from the Ministry of Education, Culture, Sports, Science and Technology of Japan. This work was partially carried out using facilities of Research Center for Low Temperature and Materials Sciences, Kyoto University.

REFERENCES