粉体および粉末冶金
Online ISSN : 1880-9014
Print ISSN : 0532-8799
ISSN-L : 0532-8799
研究論文
分子動力学法によるアルミナ-ガラス系における界面エネルギーと拡散の解析
松本 修次松原 秀彰本多 淳史
著者情報
ジャーナル フリー

2019 年 66 巻 6 号 p. 266-274

詳細
抄録

Molecular dynamics simulations were performed to study six grain boundaries of α-alumina (Al2O3) with a glassy phase of anorthite (CaAl2Si2O8) composition. We calculated excess energy, diffusion constant and ratio of excess volume with different thickness of the glassy film. It was found that excess energy for some grain boundaries exhibited a minimum. When the thickness of the glassy film was thick adequately, excess energy corresponded to the energy of alumina-glass interface and they were different for each interface. Diffusion constants depended on the thickness of the glassy film. The diffusion constant of thin film was smaller than that of thick film. Excess volume was the maximum when the thickness of the glassy film was 0.2~0.3 nm. When the atomic arrangement of the crystals didn’t fit each either, the excess volume of the grain boundary with the glassy film was smaller than that of the pure grain boundary. When the glassy film width was nm order, the atomic arrangement of the glassy phase was regular and the atomic diffusion behavior was approached that of a solid (crystalline) phase. We need to consider not only solid-liquid interface but also solid-solid (crystalline) interface for the structure of ceramics made by liquid phase sintering.

著者関連情報
© 2019 一般社団法人粉体粉末冶金協会
前の記事 次の記事
feedback
Top