当院における気管・気管支ステント留置症例の検討

石渡俊次1; 2；鈴木道明1；加藤雅子1；清水孝一1；
坂本匡一1；青木茂行1；松岡緑郎1

要約——目的. 気管・気管支ステント留置の有用性について検討した. 対象. 1996～2002年の7年間に気管・気管
支ステントを留置した中枢気道狭窄の21例. これら21例に, 延べ24回, 30個のステントを留置した. 原因疾患は原
発性肺癌11例, 肺癌9例, 転移性肺癌(肝細胞癌)1例で, 留置したステントはZ stent 22個, spiral Z stent 5個など
であった. 留置部位は気管13回, 気管分岐部1回, 左主気管支8回, 右主気管支3回, 中間幹5回であった. 方法.
これらの症例の症状としてHugh-Jones分類の変化, その後の生存期間, 合併症などからステント留置の有用性につい
て検討した. 結果. ステント留置前後の呼吸困難度の変化をHugh-Jones分類でみると, 改善8回, 不変14回であっ
たが, 増悪も2回でみられた. 肺気腫が管内性圧排による例, 全身化学療法, 放射線治療といった積極的治療が施
行した例, また転移のない例では, とくに生存期間が長かった. 合併症としては, 排痰障害, 粘膜浮腫, ステント内腔
の閉塞がみられた. また興奮血流管の3例でみられた. ステント留置後の平均生存期間は203±300.2日(10～1049日)
であった. 結語. 悪性気道狭小に対するステント留置は患者的QOLの改善と保持の上で有用であることが示唆さ
れたが, 重大な合併症もありうるため適応症例を慎重に選び, 合併症の発生に十分注意する必要がある. (気管支学.
2004;26:113-119)

索引用語——気道狭小, 気管・気管支ステント, Expandable metallic stent

Tracheobronchial Stenting

Toshiji Ishiwata1,2; Michiaki Suzuki1; Masako Kato1; Koichi Shimizu1;
Kyoichi Sakamoto1; Shigeyuki Aoki1; Rokuro Matsuoka1

ABSTRACT — Purpose. A efficacy of tracheobronchial stenting for central airway stenosis is evaluated in our hospi-
tal. Subjects. Between 1996 and 2002, we implanted 30 tracheobronchial stents in 21 patients with central airway
stenosis (24 sessions). The causes of central airway stenosis were primary lung cancer in 11 patients, esophageal cancer
in 9 patients, and metastatic lung cancer in 1 patient. We use 5 kinds of stents; 22 Z stents, 5 spiral Z stents, 1 Ultraflex
stent, 1 covered Ultraflex stent, and 1 Duman stent. The site of tracheobronchial stenosis were the trachea in 13 cases,
carina in 1 case, left main bronchus in 8 cases, right main bronchus in 3 cases and right main bronchus and truncus in-
termedius in 5 cases. Methods. We examined the clinical usefulness of bronchotracheal stent as evaluated by the Hugh-
Jones classification, survival time after stent insertion and complication. Results. Improvement in the respiratory
status after stenting according to the Hugh-Jones classification was recognized in 8 cases, no change in 14 cases and de-
terioration in 2 cases. Those patients who had central airway stenosis caused by extraluminal compression or tumor-
specific therapy with chemotherapy and/or radiation or no remote metastasis obtained longer survival time. The com-

1 東京女子大学医学部呼吸器内科
2 資料提供先: 鈴木道明, 東京女子大学医学部呼吸器内科.
3 〒187-8510 東京都八王子市茶の木町2-450 (e-mail: fvg68140@mbox.
infoweb.ne.jp).
4 Department of Pulmonary Medicine, Showa General Hospital,
Japan; 5 Dr Ishiwata is now with the Department of Respiratory
Medicine, Juntendo University School of Medicine, Japan.

Reprints: Michiaki Suzuki, Department of Pulmonary Medicine,
Showa General Hospital, 2-450 Tenjin-cho, Kodaira, Tokyo 187-
8510, Japan (e-mail: fvg68140@mb.infoweb.ne.jp).
Received July 18, 2003; accepted December 10, 2003.
© 2004 The Japan Society for Bronchoology

The Journal of the Japan Society for Bronchoiology—Vol 26, No 2, Mar 2004—www.jsbronchology.org

NII-Electronic Library Service
はじめに

近年、末梢部が保たれ手術適応のない中枢気道狭窄病変に対する治療として、放射線治療、レーザー焼灼術、バルーン拡張術、ステント留置などの内視鏡的治療が試みられている。気管・気管支ステントは、悪性疾患による気道狭窄に対してQOLの改善といった利点が多数報告され、治療の選択肢の一つとして確立されている。

今回、当院における気管・気管支ステント留置例について、その有用性や問題点についてretrospectiveに検討したので報告する。

対象

対象は1996年1月から2002年12月までの7年間に当院において悪性疾患による中枢気道病変のため気道狭窄が出現し、気管・気管支ステントを留置した21例である。

方法

悪性疾患に対する気管・気管支ステント留置の適応は、気管、左右主気管支、右中間気管支幹などの中枢気道狭窄を伴い、手術適応がない、狭帯部位より末梢の気管支が開存している症例で、すでに積極的治療が施行されているにもかかわらず気道狭窄をきたし呼吸困難がある場合や、初診時に気道狭窄が高度であり積極的治療の効果発現を待つ余裕がない場合とした。

これらの適応に合致する場合、施行前に気管支鏡検査によって内腔の状態を観察し、同時に胸部X線写真、胸部CTによって狭帯部位より末梢の気道が開存していることや、腫瘍周辺の状態を確認してからステント留置を施行した。ステントのサイズは胸部X線写真または胸部CTにて狭帯部位の中央側径と末梢側径を測定し、さらに気管支鏡検査と胸部X線写真によって狭帯部位の長さを測定して決定した。狭帯の中央部と末梢部の径が異なる場合はステントが浮かないように中央部に合わせてサイズを選定した。また通常は両端を正常な部分にかけるように留置している。留置に際してはDumon stentの1例は全身麻酔下に硬性気管支鏡を用いて留置したが、これ以外は全例局所麻酔下に軟性気管支鏡を用いて留置した。

これらの症例に関して、呼吸困難の変化、合併症の有無、その後の生存期間などを入院カルテ、看護記録をもとに解析した。呼吸困難の変化はHugh-Jones分類に従いスコア化した。

生存期間の検定においてはBreslow-Gehan-Wilcoxen検定(Stat View®)を用いてp<0.05を有意と判定した。

結果

各症例の年齢、原因疾患、組織型、病期、狭帯原因、留置部位、ステントのサイズ、気道狭窄出現後の治療、合併症、留置後の生存期間をTable 1に示す。

平均年齢は66.4±10.1歳（42～88歳）、男性17例、女性4例である。これら21例に延べ24回、30個のステントを留置した（以下、個々の症例に関する事項は例数で、個々のステント留置処置に伴う事項は回数（延べ）で示す）。

原因疾患は原発性肺癌11例、食道癌9例、転移性肺癌（肝細胞癌）1例であった。肺癌の組織型は扁平上皮癌3例、腺癌3例、非小細胞肺癌3例、未分化癌が2例であった。原因疾患の病期は、肺癌はStage IIIが8例、Stage IVが3例。食道癌はStage IIIが5例、Stage IVが4例であった。

狭帯原因としては粘膜への腫瘍浸潤によるものが15回、管外性圧排によるものが9回であった。

また留置部位（Table 1）は気管13回、気管分岐部が1回、左主気管支が8回、右主気管支が3回、中間管が5回であった。

留置したステントの種類は5種類で、うち4種類がExpandable Metallic Stent（EMS）であった。留置ステント数はZ stent®（Cook, USA）22個、spiral Z stent®（Medico's Hirata, Osaka）5個、この2種類が大多数であり、このはUltraflex stent®（Boston Scientific, USA）、covered Ultraflex stent®（Boston Scientific, USA）、Dumon tube Y stent®（Novatech, France, Marseille, 以下Dumon stent）が各1個ずつであった。なおspiral Z stent発売後の2001年4月からはZ stentは用いていない。

The Journal of the Japan Society for Bronchology—Vol 26, No 2, Mar 2004—www.jsbronchology.org
Table 1. Cases of tracheobronchial stenting

<table>
<thead>
<tr>
<th>Case</th>
<th>Age</th>
<th>Sex</th>
<th>Diagnosis *</th>
<th>Stage</th>
<th>Type of stenosis</th>
<th>Device †</th>
<th>Site of stent placement ‡</th>
<th>Size of stent (mm)</th>
<th>Therapy §</th>
<th>Complication</th>
<th>Survival after placement (days)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>81</td>
<td>M</td>
<td>Lu ca (An)</td>
<td>IIIB</td>
<td>mucosal invasion</td>
<td>SpZ</td>
<td>Ri</td>
<td>20/14×100 tapertype</td>
<td>-</td>
<td>expectoration disturbance</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>72</td>
<td>M</td>
<td>Lu ca (Ad)</td>
<td>IV</td>
<td>mucosal invasion</td>
<td>SpZ</td>
<td>L, Tr</td>
<td>12×50, 20×80</td>
<td>-</td>
<td>mucosal edema</td>
<td>13</td>
</tr>
<tr>
<td>3</td>
<td>77</td>
<td>F</td>
<td>Lu ca (Ad)</td>
<td>IIIB</td>
<td>mucosal invasion</td>
<td>Z</td>
<td>L, R, Tr</td>
<td>15×50 (×2)/20×50</td>
<td>-</td>
<td>expectoration disturbance</td>
<td>17</td>
</tr>
<tr>
<td>4</td>
<td>67</td>
<td>M</td>
<td>Lu ca (An)</td>
<td>IIIB</td>
<td>mucosal invasion</td>
<td>Z</td>
<td>L</td>
<td>unknown</td>
<td>-</td>
<td>—</td>
<td>19</td>
</tr>
<tr>
<td>5</td>
<td>65</td>
<td>M</td>
<td>Lu ca (Sq)</td>
<td>IV</td>
<td>mucosal invasion</td>
<td>Z</td>
<td>L</td>
<td>15×50</td>
<td>-</td>
<td>—</td>
<td>19</td>
</tr>
<tr>
<td>6</td>
<td>60</td>
<td>F</td>
<td>Eso ca (Sq)</td>
<td>IVb</td>
<td>mucosal invasion</td>
<td>Du</td>
<td>C</td>
<td>unknown</td>
<td>-</td>
<td>—</td>
<td>32</td>
</tr>
<tr>
<td>7</td>
<td>65</td>
<td>M</td>
<td>Eso ca (Sq)</td>
<td>III</td>
<td>mucosal invasion</td>
<td>Z</td>
<td>Tr</td>
<td>unknown</td>
<td>-</td>
<td>—</td>
<td>37</td>
</tr>
<tr>
<td>8</td>
<td>47</td>
<td>M</td>
<td>Eso ca (Sq)</td>
<td>III</td>
<td>extraluminal compression</td>
<td>Z</td>
<td>Tr</td>
<td>20×80</td>
<td>-</td>
<td>—</td>
<td>37</td>
</tr>
<tr>
<td>9</td>
<td>88</td>
<td>M</td>
<td>Meta ca</td>
<td>IV</td>
<td>extraluminal compression</td>
<td>Z</td>
<td>Tr</td>
<td>12×40</td>
<td>-</td>
<td>—</td>
<td>37</td>
</tr>
<tr>
<td>10</td>
<td>66</td>
<td>M</td>
<td>Eso ca (Sq)</td>
<td>III</td>
<td>mucosal invasion</td>
<td>Z</td>
<td>Tr</td>
<td>20×50</td>
<td>C, R</td>
<td>(hemoptysis)</td>
<td>39</td>
</tr>
<tr>
<td>11</td>
<td>51</td>
<td>M</td>
<td>Eso ca (Sq)</td>
<td>III</td>
<td>mucosal invasion</td>
<td>Z</td>
<td>L</td>
<td>15×50</td>
<td>—</td>
<td>(hemoptysis)</td>
<td>43</td>
</tr>
<tr>
<td>12</td>
<td>67</td>
<td>M</td>
<td>Lu ca (NSCLC)</td>
<td>IV</td>
<td>extraluminal compression</td>
<td>SpZ</td>
<td>Tr</td>
<td>20×80</td>
<td>—</td>
<td>—</td>
<td>64</td>
</tr>
<tr>
<td>13</td>
<td>60</td>
<td>M</td>
<td>Lu ca (Sq)</td>
<td>IIIA</td>
<td>extraluminal compression</td>
<td>Z</td>
<td>Ri, Tr</td>
<td>15×50 (×2)</td>
<td>B</td>
<td>—</td>
<td>117</td>
</tr>
<tr>
<td>14</td>
<td>58</td>
<td>M</td>
<td>Eso ca (Sq)</td>
<td>IVa</td>
<td>mucosal invasion</td>
<td>Ufc</td>
<td>Tr</td>
<td>20×60</td>
<td>L</td>
<td>(hemoptysis)</td>
<td>134</td>
</tr>
<tr>
<td>15</td>
<td>76</td>
<td>M</td>
<td>Eso ca (Sq)</td>
<td>IVa</td>
<td>mucosal invasion</td>
<td>Z</td>
<td>Tr</td>
<td>20×50</td>
<td>C</td>
<td>—</td>
<td>176</td>
</tr>
<tr>
<td>16</td>
<td>70</td>
<td>M</td>
<td>Lu ca (Sq)</td>
<td>IIIB</td>
<td>mucosal invasion</td>
<td>SpZ</td>
<td>Ri</td>
<td>12×30</td>
<td>C</td>
<td>—</td>
<td>222</td>
</tr>
<tr>
<td>17</td>
<td>53</td>
<td>M</td>
<td>Eso ca (Sq)</td>
<td>IV</td>
<td>mucosal invasion</td>
<td>Z</td>
<td>L</td>
<td>15×50</td>
<td>R, L</td>
<td>—</td>
<td>297</td>
</tr>
<tr>
<td>18</td>
<td>57</td>
<td>M</td>
<td>Lu ca (NSCLC)</td>
<td>IIIB</td>
<td>extraluminal compression</td>
<td>Ufc</td>
<td>Tr</td>
<td>20×60</td>
<td>R, C</td>
<td>tumor growth through stent</td>
<td>343</td>
</tr>
<tr>
<td>19</td>
<td>69</td>
<td>M</td>
<td>Lu ca (Ad)</td>
<td>IIIA</td>
<td>extraluminal compression</td>
<td>Z</td>
<td>Ri</td>
<td>15×50</td>
<td>—</td>
<td>—</td>
<td>747</td>
</tr>
<tr>
<td>20</td>
<td>76</td>
<td>F</td>
<td>Eso ca (Sq)</td>
<td>III</td>
<td>extraluminal compression</td>
<td>Z</td>
<td>Tr</td>
<td>20×50</td>
<td>C, R</td>
<td>—</td>
<td>824</td>
</tr>
<tr>
<td>21</td>
<td>62</td>
<td>F</td>
<td>Lu ca (NSCLC)</td>
<td>IIIB</td>
<td>extraluminal compression</td>
<td>Z</td>
<td>Ri, L</td>
<td>15×50 (×2)</td>
<td>C, R</td>
<td>Granulation</td>
<td>1049</td>
</tr>
</tbody>
</table>

‡ Tr: trachea, L: left main bronchus, R: right main bronchus, Ki: right main and intermedius bronchus, C: carina.
用いたステントのサイズは外径12～20mm，長さは30～100mmであった。ステント留置後の気管支観察による観察では全例で狭窄した気管・気管支の開大が得られ，またステント留置のほかに気道狭窄の治療として行われたものとしてバルーン拡張術1例，レーザー焼灼術2例があった。

ステント留置前後の呼吸困難の改善をHugh-Jones分類でみると，改善が得られたものは24回中8回（33.3％）であり，不変が14回（58.3％）であった（Figure 1）。24回中9回で留置後に自宅にて退院することができた。また「不変」をさらに検討すると，14回の中で4回が退院し，2回はホスピスへ転院することができた。7回で3ヶ月以上の長期生存が得られた。また呼吸困難度が重篤となる前（Hugh-Jones1，2）に予防的に行ったステント留置が5回含まれ，うち4回では3ヶ月以上の長期生存が得られた。このほかにもHugh-Jones分類で不変であった症例において喘鳴の改善など，スコアとしては表れないステントの効果がみられた。

呼吸困難度の増悪は2回（8.3％）でみられた。これらの場合，ステント留置前に気管・気管支の拡張操作を行った例が1例，ステント留置前でみられた狭窄が留置後に増悪し，呼吸不全が増悪したものが1例であった。

またステント留置後の生存期間にかかわる因子について検討を加えた。今回の症例群は3ヶ月を境に2群に分けられた（Table 2），3ヶ月以上の群には，遠隔転移のないIII期までの例，治療として対症療法だけでなく全身化学療法，放射線治療といった積極的治療が気道狭窄出現後も施行した例，気道狭窄が管外性圧挙による例が多かった。さらにこれらの因子ごとに平均生存期間を比較すると，III期以下の症例288.7日，IV期症例63.9日（p=0.29），積極的治療施行可能例385.5日，施行不能例90.8日（p=0.08）管外性圧挙342.0日，粘膜浸潤80.5日（p=0.15）と有意差はみられないものの，それぞれ前者でより生存期間が長い傾向があった。

EMSの合併症としては，排痰障害例4例，ステント内膜増殖例2例，このほか粘膜浮腫，ステント近位部肉芽による再狭窄，ステント破損（Zステント）各1例ずつみられた。ステントが破損したのは気管に留置した例であった。これからの症例において同様にステント留置からの生存期間は100日以上であり，死因は全例が癌による全身状態の悪化であった。

転帰は21例全例が死亡で，初回ステント留置後死亡に至るまでの平均生存期間は203±302.2日（10～1049日）であった。

考 察

術前適応のない中核気道狭窄に気管・気管支ステントが留置されるようになり，特に悪性疾患の患者でQOLの向上が得られるようになった。

気道・気管支ステントの適応に関しては，基底疾患が良性疾患，悪性疾患にかかわらず，必ず手術適応のないことがあれば，その上で基底疾患に適応と留置するステントの種類が異なり，良性疾患に対しては短く
Table 2. Summary of cases

<table>
<thead>
<tr>
<th>Survival time after stenting</th>
<th>< 3 months</th>
<th>> 3 months</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cases</td>
<td>12</td>
<td>9</td>
<td>21</td>
</tr>
<tr>
<td>Placement times (total number)</td>
<td>12</td>
<td>12</td>
<td>24</td>
</tr>
<tr>
<td>Mean survival time (day) (range)</td>
<td>29.6 (10-64)</td>
<td>434.3 (117-1049)</td>
<td>205 (10-1049)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cause of stenosis (cases)*</th>
<th>Lung cancer</th>
<th>Esophageal cancer</th>
<th>Metastatic lung cancer</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>6</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>Remote metastasis (cases)</td>
<td>(×)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(−)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Only supportive care after stenting (cases)</td>
<td>11</td>
<td>5</td>
<td>16</td>
</tr>
<tr>
<td>Hugh-Jones classification (total number)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Improvement</td>
<td>3</td>
<td>5</td>
<td>8</td>
</tr>
<tr>
<td>No change</td>
<td>7</td>
<td>7</td>
<td>14</td>
</tr>
<tr>
<td>Deterioration</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Type of stenosis (total number)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mucosal invasion</td>
<td>9</td>
<td>6</td>
<td>15</td>
</tr>
<tr>
<td>Extraluminal pressure</td>
<td>3</td>
<td>6</td>
<td>9</td>
</tr>
<tr>
<td>Complication (total number)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Expectoration disturbance</td>
<td>4</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>Mucosal edema</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Tumor growth through stent</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Stent damage</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Granulation</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Hemoptysis</td>
<td>2</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>

Note: *Includes cases with more than one cause of stenosis.

からの破壊再増殖、留置後に抜去が困難であることがあげられる。2,6,7

これに対して今回1例のみに留置されたDumon stentの利点は、支持力が強くスチュート内再増殖が起こりにくいこと、問題発生時に抜去可能であること、気管分岐部にも使用可能であること、短所としては硬性管を用いるため全麻下に行う必要があること、留置後の位置移動が起こりやすいこと、喀痰排出障害をきたしやすいことがあげられる。6,7

これらの適応、ステントの選択をもとに当施設で経験した症例に関して、留置によるQOL・生存期間に与えた影響、合併症に関して考察する。

1. QOL・生存期間に与えた影響
中枢気道狭窄によるQOLの低下は、呼吸困難による日常生活活動（activities of daily living、以下ADL）の低下が主なものである。

今回の場合でも呼吸困難度をHugh-Jones分類に従い数値化を行ったが、状態改善例が8回（33.3%）とこれまでの報告より少ない傾向がみられ、「不变」が14回（58.3%）と多かった。しかしこれら「不变」の内、呼吸困難が重度である前に予防的に行ったステント留置例や、3ヶ月以上の長期生存例、退院して自宅で過ごすことが可能な症例が含まれていた。またADL改善に至らずHugh-Jones分類上は不変に分類されるものの、呼吸の改善など明らかな呼吸困難の改善がみられた例が認められた。Hugh-Jones分類での検討では限界があったが、上記のことを総合すると、悪性気道狭窄を伴う患者のQOLを改善する可能性ある上で気管・気管支ステント留置是有用であることが示唆された。しかし喀痰などの状態の改善は過去の検討では数値化することが困難であり、さらにQOLにはさまざまな要因が関与すると考えられるため、今後はBorg scaleや患者の総合的な満足度を評価するための評価法を用いて選択的に、より客観的な検討を行う必要がある。

Hugh-Jones分類による呼吸困難度が結果的に増悪した2例については、気道粘膜浮腫によるもの、ステント後もまた気道の喀痰排出困難により肺炎が悪化したものであった。これらに関しては気道過敏性のある例、肺炎のコントロールが不十分な例では、ステント挿入により低い危険を伴うと推定される。また、前に述べたステント置留により肺の改善が期待される場合もあり、ステントの適応はADLや体的問題などを含めて総合的に考える必要があると思われる。

またステント留置後の生存期間にかかわる因子についての検討では、遅延転帰のないIII期までの例、治療を含めて対症療法だけでなく全身化学療法、放射線治療とといった積極的治療が気道狭窄発症後も施行した例、気道狭窄が管外性を伴う例がより生存期間が長い傾向があった。これらの症例に対しては今後も積極的に気管・気管支ステントの留置を考慮するべきである。

逆にIV期症例、積極的治療を伴わない、粘膜浸潤例では生存期間が短い傾向があった。粘膜浸潤例で生存期間が短い傾向が認められた原因としては、ステントの挿入間隔での腫瘍の再増殖、気道粘液の亢進といったステント留置の限界を考慮された。ただしステント内再増殖例に対するステント再留置例を検討すると、いずれも再留置後の生存期間が長期である。再留置の有用性は示唆された。

2. 合併症
合併症としては疾患の喀痰障害、粘膜浮腫、ステント内腫瘤増殖やステント自体の破損がみられた。一般にEMSの合併症としては、外張りのないものでは、特に浸潤性狭帯に関してステントのウィヤー間隙からの巣行を排出することが深く、このような外張りが生じているタイプが適している。逆にこの場合は外張りによる線維運動の障害、感染の可能性がある。この検討では、外張りのないEMSにおいても排痰障害がみられた。今後排痰障害を考慮した場合、ステント留置前と比較して疾患が改善しないという患者の訴え、印象から判定した。ステント留置により気道は十分に開大しており、原疾患の進行による体を低下が喀痰排出低下となり排痰障害につながったと考えられた。

また気道に留置したZ stentの1例にステントの破損がみられた。症状はなく、留置から1年後の胸部X線写真から診断された。当施設ではspiral Z stentの使用を開始したが破損は認められていない。しかしspiral Z stentでも最近破損の報告があるため、EMSでは注意が必要である。

また喀痰が3例にみられ、直接死亡となった3例とも食道癌であり、いずれも明らかな前歴をみられなかった。原因に関しては病理解剖がなくステントの関連した出血と確定できなかった。このうち1例については疾患の大動脈浸潤がみられていたが、ステントが大動脈と接していないことからも腫瘍による大動脈の出血を診断された。他の2例については血管浸潤はみられずステントによるものが確定できない。金属ステントによる喀痰と、それによる死亡は以前から報告されている、2,6,8,12ステント留置部位との関係についても、気管支動脈の破綻でも致死的となる例が報告されており、留置部位にかかわらないと考えられ、このため金属ステントが気管壁破壊、穿孔、出血といった致死的合併症を惹起する可能性は避けられないと考えられる。さらにそれら合併症が生じてもEMSは抜去不能であり、金属ステントの適応は悪性疾患に限るべきと思われる。
病変が気道粘膜に浸潤している例、潰瘍形成がみられる例では特にこの可能性が高いと思われ、十分にインフォーマードコンセントを得る必要がある。またこれに対する対処として最近当院では前述のように決定されたステントのサイズのうち外径については1段階細いサイズを選択し、気道粘膜の破壊を可能なかぎり予防するようしている。

このように合併症も起こりうるためステント適応症例を慎重に選択するべきであるが、一方で気道狭窄状態はQOLを大きく悪化させる。気管・気管支ステント留置は進行癌症例に対して行う緩和治療の一環ともとらえられ、生存期間よりもQOLを改善することに主眼を置き、結果的に生存期間の方も延長させることができればなおよいはずである。今回の当院における検討のように、悪性気道狭窄に対する気管・気管支ステント留置によってQOLが改善あるいは保持される症例は少なくない。「どのような患者さんのどのような気道狭窄に対し、どの時期にどのようなステントを入れることが、患者さんのQOLを改善して合併症もなく、その後よりよい時間を見極めることにつながるのか？」という命題をさらに検討していきたいと考えている。

結 語

当院における気管・気管支ステント留置例をまとめた。悪性疾患による中枢気道狭窄に対するステント留置の有用性を検討したところ、QOLの改善および保持に対する気管・気管支ステントの有用性が示唆された。気道狭窄が管外性圧排による例、全身化学療法、放射線治療といった積極的治療が施行した例、遠隔転移のない例では、より生存期間が長く、ステント留置が有用となりうると考えられた。しかし致死的な合併症もみられるこ

とから、合併症のリスクとQOLの改善との得失を考慮し適応症例を選び、合併症の発生に十分注意することが必要である。

REFERENCES

7. 橋原麟子，宮澤輝臣，土井正男，ほか。気道ステントの合併症。気管支学. 1997;19:105-111.