技術報告

植物性発生材の粒径および窒素施肥が分解特性・
土壌の性質・植物生長に及ぼす影響

高橋輝昌1・伊藤香那子1・野口敬記2・浅野義人3・小林達明1

摘要：植物性発生材を粉碎して土壌に敷きならし、塩塩改良材として利用するための基礎的知見を得るために、植物性発生材の粒径（長さ）と、敷きならされた植物性発生材への窒素施肥の添加が、植物性発生材の分解特性、土壌の性質、植物生長に及ぼす影響について調査した。植物性発生材の粒径が小さいほど植物性発生材中の易分解性無機物の分解が促進される。土壌の酸度、塩塩が中和される。植物性発生材への窒素施肥添加によって、微生物による植物性発生材の分解活性が高まり、土壌中の有機物含有量が増加した。過剰な施用は苗の生育を阻害した。植物性発生材への施肥量は植物性発生材のC/N比率を20程度にする量より少なくするべきである。

キーワード：植物性発生材、植物性発生材の粒径、窒素の有機化の促進、塩塩改良

Key words: plant waste, particle size of plant waste, enhancement of nitrogen immobilization, soil improvement

1. はじめに

植物性発生材の産廃利用は、環境問題や土壌改良の観点から重要であるが、植物性発生材の粒径、長さが土壌改良効果を高めるのに影響を及ぼすことが示唆されている。したがって、植物性発生材の利用を促進するためには、植物性発生材の粒径を適切に調整することが重要である。

堆肥化していない植物性発生材の分解を促進することは、土壌改良効果を高めると同時に、植物性発生材の利用を促進する上で重要である。特に、植物性発生材の粒径を細かくすることは、土壌改良効果を高めるのに役立つ。したがって、植物性発生材の粒径を細かくすることが重要である。

そこで、本研究では、植物性発生材の粒径と植物性発生材への窒素施肥の効果を検討した。

2. 方法

2.1 植物性発生材の粒径が分解特性と苗の生育に及ぼす影響（実験1）

2.1.1 材料 実験に用いた植物性発生材は、（1）長さ25mm以下で粉状のものを含めたもの（以下、25+0）、（2）長さ25mm以下で粉状のものを含めたもの（以下、25-0）、（3）長さ50mm以上のものを含めたもの（以下、100m以上）の4種類である（表1）。

生育試験には樹高50cmのシラカシ苗を用いた。

表1 実験1で用いた植物性発生材の性質

<table>
<thead>
<tr>
<th>粒径（長さ）</th>
<th>本本文中の表記</th>
<th>C(g·kg⁻¹)</th>
<th>N(g·kg⁻¹)</th>
<th>C/N比率</th>
</tr>
</thead>
<tbody>
<tr>
<td>25mm以下・粉状含む</td>
<td>25+0</td>
<td>322</td>
<td>6.7</td>
<td>48</td>
</tr>
<tr>
<td>25mm以下・粉状除く</td>
<td>25-0</td>
<td>276</td>
<td>6.2</td>
<td>44</td>
</tr>
<tr>
<td>50～100mm</td>
<td>50</td>
<td>358</td>
<td>2.0</td>
<td>184</td>
</tr>
<tr>
<td>100mm以上</td>
<td>100</td>
<td>305</td>
<td>6.0</td>
<td>51</td>
</tr>
</tbody>
</table>

1 千葉大学園芸学部
2 千葉大学園芸学部（現・九州大学大学院生物資源環境科学府）
3 千葉大学大学院自然科学研究科
表2 実験2で用いた植物性発生材の窒素・窒素含有量

<table>
<thead>
<tr>
<th>C(g・kg⁻¹)</th>
<th>N(g・kg⁻¹)</th>
<th>N/C比</th>
</tr>
</thead>
<tbody>
<tr>
<td>枝葉部</td>
<td>398.3</td>
<td>6.80</td>
</tr>
<tr>
<td>幹部</td>
<td>437.6</td>
<td>2.27</td>
</tr>
</tbody>
</table>

雨水植物性発生材通過を利用して採取できるようにした。同様の雨樋、パラメータを植物性発生材散布部の外に設置し、植物性発生材を通した降雨を採取した。降雨、植物性発生材通過雨の採取は降雨ごとに行った。ただし、雨量が少なく、採取できない区がある場合には採取を行わなかった。採取した降雨、植物性発生材通過雨のpH、電気伝導度(UC)、アルカリ度を測定した。

木枠の2m × 1.2mの部分をプラスチック板で1辺15cmの格子状に区切り、植物性発生材を敷き詰めた稿15cm、横15cm、高さ10cmで上方が開放されたナイロンメッシュ製の箱を植物性発生材1種類につきおよそ20個ずつ設置し、分岐試験区とした。1ヶ月ごとに植物性発生材の塩素を1種類ずつ取り回し、植物性発生材の窒素含有量、一般細菌数、糸状菌数、放線菌数を測定した。

木枠の2m × 0.2mの部分に植物性発生材を敷き詰め、二酸化炭素放出測定区とした。土壌呼吸測定装置(Li-8400-9)を用いて、植物性発生材表面からの二酸化炭素放出速度を測定した。

2.2 植物性発生材散布後の窒素施肥が分解特性と木の生育に及ぼす影響(実験2)

2.2.1 材料 実験には(1)シラカナの枝葉部を用いる植物性発生材,(2)カエデの幹部を用いる植物性発生材を用いた。植物性発生材の窒素・窒素含有量を表2に示す。

窒素施肥として窒素41mg含有で温度25℃の条件で100日間肥効が持続する緩効性肥料を用いた。

生育試験には樹高60cmのシラカナ苗木を用いた。

2.2.2 方法 枠2m、横0.9m、高さ1mの木枠をつくり、木枠中央部を長さ0.6m、0.2m、1.2mとなるように区切り、このように木枠を植物性発生材敷き詰めに6処理区分成し、また、対照用に長さ0.8m、横0.9m、高さ0.1mの木枠をつくり、木枠中央部を長さ0.6mと0.2mと1.2mとなるように区切り、これらの3区分成した。各処理区を千葉大学農学部内の圃場に設置し、各区の長さ0.6m×0.9mの栽培を植栽の生育調査区、0.2m×0.9mの栽培を二酸化炭素放出調査区、1.2m×0.9mの栽培を植物性発生材採取区とした。

2001年5月11日に苗木の生育調査区にシラカナ苗木を各区6本ずつ植栽した。

2001年5月25日に植物性発生材散布区に2種類の植物性発生材をそれぞれ3区ずつ散布した。植物性発生材採取区では、2.1.2と同じ様の植物性発生材を詰めたナイロンメッシュ製の箱を設置した。

枝葉部、幹部、対照区のそれぞれについて、窒素多施肥料(以下、多施肥料)、窒素少施肥料(以下、少施肥料)、窒素無施肥料を設け、窒素施肥を施した。

図1 植物性発生材からの二酸化炭素放出速度の経時変化

3.結果と考察

3.1 穹歯の違いが分解特性、土壌の性質、苗木の生育に及ぼす影響(実験1)

3.1.1 分解性 植物性発生材の窒素含有量は、調査期間を通じてほとんど変化しなかった(データ省略)。本研究では、窒素の有機化による土壌中での無機態窒素の減少はほとんど起こらなかったと考えられる。本研究で植物性発生材を敷き詰めることが植物の有機化が起こらなかった原因の一つとして、調査期間中降雨が少なく、植物性発生材の乾燥が進行であり、微生物による分解活動が活発化できなかったと考えられる。

植物性発生材からの二酸化炭素発生速度の時間変化を図1に示す。調査開始直後の2001年6月上旬に、まずの小さい25-0と50-0からの二酸化炭素発生速度の差は明瞭になった。有機物は易分解性のもののが分解し難化され、ついて難分解性のものが無機化される。植物性発生材の木の通気性を確かめることで、植物性発生材に含まれる易分解性の有機物の無機化が促進されることを推察される。

植物性発生材中の一般細菌数は25-0と50-0で50、100
図2 植物性発生材下の土壌pHの経時変化

より大きな値で推移した（データ省略）。植物性発生材の粒径が細かくなるほど、微生物の生活できる面積が大きくなり、微生物数が多くなると考えられた。一般細菌よりも数の少ない条状菌、放線菌には、植物性発生材の粒径による表面積の違いが顕著に反映され、植物性発生材の粒径による差が不明確であった。

調査期間中（2001年6月〜10月）の植物性発生材の重量減少率をみると、100ではほとんど減少しておらず、25〜0で顕著に高く、250 よりも50の違いが不明確であった（データ省略）。これらの結果は短期間の調査で得られたものであること、調査期間中に降雨が発生することにより、粒径により微生物の種類が異なることなどの問題を含んでいる。もっとも粒径の大きさ100ではほとんど分解されていないことから、粒径の大きな植物性発生材は分解されにくく示唆されている。今後の継続調査でこのことを確認する必要がある。

3.1.2 土壌と木質分解への影響（実験1）降雨のpHは植物性発生材を通過することで上昇している（データ省略）。植物性発生材下の土壌の酸の中和作用が示された。pHは幾らか変化して1ヶ月間（2001年6月）までは、25〜0で25〜0、50、100よりも高い値を示した。それ以降には、植物性発生材の粒径によるpHの差は不明瞭であった。降雨の酸中和能力を示すアルカリ度や、植物性発生材通過後のイオン濃度を反映するECもpHと同様の傾向を示した。降雨の量は植物性発生材から溶出される有機物イオンや、降雨中の水素イオンと植物性発生材中の有機イオンの交換によって中和されると考えられる。粒径の細かい植物性発生材下では降雨に接触する面積が増加し、これらの反応が起こりやすくなっていると推察される。このような植物性発生材の粒径の影響は数値を示し、後数ヶ月ほど顕著に見られるが、その後は不明瞭であり、前述の易分解性有機物の動態の関係が示唆された。

植物性発生材下の土壌pHの経時変化を図2に示す。土壌pHは植物性発生材の粒径により直後から調査期間を通じてほぼ一定の値であり、25〜0 > 25〜0 > 50 > 100の順に低下した。土壌pHは植物性発生材通過後に溶出した酸和物質の影響を受けていると考えられる。土壌pHは植物性発生材下の農作物における酸和物質のための影響が調査期間を通じて観察されていることが示された。以上のことから、細かい粒径の植物性発生材を施用することにより、降雨や土壌の酸中和されることが示唆された。

各試験区に施用された木質分解材を、播種時を1とする相対値の変化として図3に示す。植物性発生材の粒径の影響は斎藤ら（2001年6月）で見られるが、25〜0 > 25〜0 > 50 = 100の傾向を示すようにになった。粒径の細かい植物性発生材では、斎藤ら（2001年6月）で見られるが、木の生育を促進したことが考えられる。斎藤ら（2001年6月）に粒径の細かい植物性発生材で見られた植物性発生材の分解と降雨水質への変化がどのくらいの時間にわたって木質分解材に影響を及ぼすのかについては、今後、調査を継続して検討する必要がある。

3.2 木質施肥が植物性発生材の分解特性に及ぼす影響（実験2）

植物性発生材の微生物活性は、いずれの植物性発生材でも施肥を行った区の微生物活性が無施肥区よりも高かった。多施肥区と少施肥区の微生物活性の違いは不明瞭であった（データ省略）。植物性発生材への木質施肥の施肥が、植物性発生材の木質の有機化とそれに伴う微生物の増殖をもたらしていると考えられる。多施肥区と少施肥区で明確な差が見られないのは少施肥区の施肥量であって、木質の有機化には十分であったためと推察される。

植物性発生材からの下酸化炭素放出速度は植物性発生材の粒径により3ヶ月後に無施肥区とよび施肥区で大きさ傾向にあった（データ省略）。しかし、その後は施肥の有無による差が不明瞭になった。このことから、木質施肥は植物性発生材分解初期の、易分解性有機物の分解を無機化過程を促進すると考えられる。
3.3 植物性発生材の保水性に関する研究（実験2）

植物性発生材から採取された土壌の窒素含有量は植物性発生材製造より先に採取された区に比べて多い傾向にあった。

4. 結論

本研究の結果、①植物性発生材の試験値が小さくなったこと、②窒素の有機化が窒素肥料（無機態窒素）の添加によって促進すること、③植物性発生材の試験値が小さくなったこと、④植物性発生材の試験値が小さくなったこと、⑤植物性発生材の試験値が小さくなったこと、⑥植物性発生材の試験値が小さくなったことを考慮して、植物性発生材の試験値が小さくなったことを考慮して、植物性発生材の試験値が小さくなったことを考慮して、植物性発生材の試験値が小さくなったことを考慮して、植物性発生材の試験値が小さくなったことを考慮して、植物性発生材の試験値が小さくなったことを考慮して、植物性発生材の試験値が小さくなったことを考慮して、植物性発生材の試験値が小さくなったことを考慮して、植物性発生材の試験値が小さくなったことを考慮して、植物性発生材の試験値が小さくなったことを考慮して、植物性発生材の試験値が小さくなったことを考慮して、植物性発生材の試験値が小さくなったことを考慮して、植物性発生材の試験値が小さくなったことを考慮して、植物性発生材の試験値が小さくなったことを考慮して、植物性発生材の試験値が小さくなったことを考慮して、植物性発生材の試験値が小さくなったことを考慮して、植物性発生材の試験値が小さくなったことを考慮して、植物性発生材の試験値が小さくなったことを考慮して、植物性発生材の試験値が小さくなったことを考慮して、植物性発生材の試験値が小さくなったことを考慮して、植物性発生材の試験値が小さくなったことを考慮して、植物性発生材の試験値が小さくなったことを考慮して、植物性発生材の試験値が小さくなったことを考慮して、植物性発生材の試験値が小さくなったことを考慮して、植物性発生材の試験値が小さくなったことを考慮して、植物性発生材の試験値が小さくなったことを考慮して、植物性発生材の試験値が小さくなったことを考慮して、植物性発生材の試験値が小さくなったことを考慮して、植物性発生材の試験値が小さくなったことを考慮して、植物性発生材の試験値が小さいことが示唆された。