論文

植栽間隔、誘引方法及びフェンスのメッシュ径の違いがムベ
（Stauntonia hexaphylla (Thunb.) Decne.）の被覆成長に及ぼす影響

岡田準一①・下村 孝②・田中孝雄③・畑 明宏③

摘要：植栽間隔および誘引方法が、異なるメッシュ径のフェンスを被覆する実生3年生のムベの成長に及ぼす影響を、被覆率の測定により調べた。植栽間隔および誘引方法の違いが、ムベの成長に影響を与え、球根性よりも密植性、そして、フォーカス状（水平誘引）よりも単焦点（水平誘引）の方が平均被覆率は高かった。メッシュ径の違いもまた、ムベの成長に影響を与え、メッシュ径が小さい方がメッシュ径が大きいよりも平均被覆率は高かった。

キーワード：ムベ（Stauntonia hexaphylla (Thunb.) Decne.）、フェンス、被覆、メッシュ径、植栽間隔、誘引方法

Okada, Norito, Shimomura, Takashi, Tanaka, Takao and Hata, Akihiro: Effects of planting intervals, training methods and mesh sizes of fences on the growth of Stauntonia hexaphylla (Thunb.) Decne. covering the fences

Abstract: We examined the effects of planting intervals and training methods on the growth of 3-year Stauntonia hexaphylla (Thunb.) Decne. seedlings covering fences of various mesh sizes with measuring ratios of covering fences. The differences of planting intervals and training methods affected the growth of seedlings. The average ratios of covering fences in close planting plot were larger than those in sparse planting plot. The average ratios of covering fences in vertical training plot were larger than those in horizontal training plot. The differences of mesh sizes affected the growth of seedlings. The average ratios of covering fences in small size of a mesh plot were larger than those in large size of a mesh plot.

Key words: Stauntonia hexaphylla (Thunb.) Decne., fence, covering, mesh size, planting interval, training method

1. はじめに

現在、都市のヒートアイランド現象①など、都市におけ
る温熱環境問題への対処を目的として、都市に緑を持ち込む
手法が課題となっている。その中でも特に、都市における植
栽可能面積の狭さから、屋上緑化および立体緑化に注目が
集まっている。しかし、これらの緑化はともに、事例数が増
加する一方で、屋上および立面上という特殊空間における環境
と、植物の生育特性との不適切な、新たな課題が多発し
ている①②③。特に、立体緑化は事例数が多く、研究の歴史
が比較的古いにもかかわらず、つる植物の生育特性と
立体との関係には、未だに多数の課題が残されている。

沖中ら①が行った事例調査では、巻き付けや付着などの
つる植物の生育特性と、建築物の壁面や棚、屋根などの立体の
種類との関係を、定性的に明らかにしようととした。また、実
験的研究では、付着型つる植物を立体に登攀させ、つる植物
の初期成長①および、その付着特性②③を明らかにしている。さら
に、植村①④は、付着型つる植物を立体に登攀および下乗
させることで、つる植物の生育特性を明らかにしている。こ
のように、付着型つる植物の生育特性と立体との関係に
する研究は多数行われている。一方、巻き付け型つる植物を用
いた立体緑化の例としては、植え鉢やフェンスの緑化が挙げら
れ、これらの立体緑化は、日本においても古くから行われて
おり、手引き書も多数刊行されている①。しかし、これらの
手引き書に掲載されている知識およびデータは、筆者の経験
に基づくものであったり、実験データも多くは論文としては
形になっておらず、その根拠は明確とはいいえない。立体緑化
を緑化工法として確立するためにも、正確な知識およびデー
タをさらに蓄積していく必要がある。

国内では、沖中ら④が、巻き付け型つる植物の生育特性
と支持体の特性から導いた組み合わせ理論と、市街地におけ
る事例調査で得られた、巻き付け型つる植物と支持体の最適
な組み合わせを比較・対照する事で、巻き付き型つる植物と
支持体の関係を明らかにしている。また、Sakaiら⑤は、フ
ジ（Wisteria floribunda (Willd.) DC.）の生育に及ぼす支持
柱の効果に関する研究を行い、支柱の有無およびその長さが，
フジの茎の直径や新葉へのバイオマスの分配に影響を与えていていることを明らかにしている。しかし、つつじ植物の茎の曲率伸縮、巻き付きが、および登録段階ときの生育特性と、支持体の大きさ（半径）や間隔などとの関係は明らかにされていない。

国外でも、巻き付きを聖なる植物に関する研究は数多。Larsonは、スイカズラ（Lonicera japonica Thunb.）およびツキヌキニシノウ（L. sempervirens L.）の葉の先端部の回転軸運動に注目し、トレリスに植える植物を登録させ、

(1) 直立するが登録しない。 (2) 登録する。 (3) 鉢にすばるの3種類の試験区に分類し、回転軸運動率およびトレリス利用成功率などを測定し、スイカズラを鉢にすばるの際、回転軸運動を行わないことを明らかにしている。しかし、トレリスのメッシュ径と植物の生育特性の関係については考察されていない。また、Matsturらは、つつじ植物の支持体への接触による巻き付けを鉢に注目し、巻き付けによって生じる内部生体の変形を定量化する電気抵抗計測装置の開発を行っている。以上の結果により、巻き付けを聖なる植物の生育特性と関係する要因であるが、茎の曲率伸縮、巻き付きの生体、登録角度、および支持体の大きさ（半径）などに注目した研究は数多くみられるが、これらの知見を総合的に現地に利用するには、総合の現象に即した実証的な研究が必要である。

本研究では、植栽間隔および鉢にすばる方法が、異なるメッシュ径のフェンスを被覆するつつじの成長に及ぼす影響を、被覆率の変動にかかわらずした。

2. 材料及び方法

2.1 供試植物

実験材料として、常習性本植物のムヘを用いた。ムヘは、4月から5月に向けてピンクがかかった白い花を付け、秋には咲き果実を結ぶ。そのため、庭園や花壇の現場では、主にフェンスやトレリス、パーゴラなどに登録させて利用される。

実験には、宮崎県の農家から2001年4月12日に購入した草丈30～40 cmに育った3年生の実生苗を供試した。木本性つつじ植物の楽生苗が、支持体を必要とするまでに、草丈が30～40 cmに達するというが、東南アジアやおよび中南米などの熱帯林における調査を明らかになっている。これらの知見を供試植物の選定にとらえて参考にした。

2.2 試験場

京都府立大学付属下鶴農場に試験圃場を設置し、フェンス（セキイレドウフェンスG10、寝湯木橋（株））を東西に面を向けて設置した。1株の大きさが縦1.4 m、横2 mのフェンスを、南北に12株並べ、12株を1列として東西に1.5 m間隔で2列配置した。フェンスは、メッシュ径の異なる2種類（メッシュ径：縦12.1 cm、横10.4 cm、メッシュ径：縦12.1 cm、横5.2 cm）を使用した。なお、フェンスの根木材および横線材の直径は、ともに4.0 mmであった。

植栽部分は、フェンスの配置方向に沿って、幅60 cm、深さ30 cmにわたって土壌を模擬し、土壌改良材としてビートモスを、体積比で堆土：ビートモス=6：4の割合で配合した。また、新たに植えられたために、植栽部分には幅60 cm、厚さ0.4 cmの防草用不織布マットを設置した。さらに、試験圃場内の通路部分にも、同様の目的でポリエチレン製灰色マルチを設置し、試験圃場内にある水道にコンピュータ内蔵電磁弁を取り付け、さらに点滅灌水ノズルを供試植物1株につき1つの割合で設置し、灌水量の制御を行った。

なお、供試植物の誘引は、接ぎ木用クリップを用いて根茎材に固定する方法で行った。

2.3 実験計画

供試植物は、実験用とされる苗を150株準備し、その中からさらに均一な苗を検査して48株選び出し、単純無作為抽出法により1試験区に1株あわせ3株のグループを単位として各12グループに分け、試験圃場に配置した。供試植物の平均草丈および標準偏差は、37.6±6.61 cmであった。

実験水準は、植栽間隔、鉢にすばる方法およびメッシュ径の違いとした。植栽間隔は、供試植物を1 mあたりに1本植えする密度植区および、1 mあたりに3本植え（株間＝25 cm）する密植区の水準を設定した。鉢にすばる方法では、水平に対して垂直方向に鉢にすばる鉛直鉢（鉛直型）および、地面に対して水平方向に鉢にすばる水平鉢（フォーカ状）の2水準とした。（図-1）。メッシュ径は、1メッシュの寸法が縦12.1 cm、横10.4 cm、縦12.1 cm、横5.2 cmのメッシュ径を2水準で設定した。なお、各試験区ともに3反復とした。
2.4 調査期間及び管理
2001年4月17日に山を測定し、4月17日から10月27日までで1回の調査を行った。
供試植物の株元付近の土壌が乾いた場合に、30分間の点滴灌水を行った。また、2週間に1回、供試植物の株元付近に生育する雑草の除草を行った。5月29日、食害虫を防ぐために、粒状デナボン（タケノコ園芸（株））を1株あたり3gずつ、各供試植物の株元付近の空隙部分に散布した。

2.5 被覆率の測定
フォーゲンスから1.5m離れた位置から、縦1.21m、横1.04mの範囲が1画像に収まるように撮影を行った。なお、背景には無反射の黒色布を設置した。撮影は、すべて晴天の日を選び、撮影時間は、いずれも午前9時から午前10時までの間とした。
デジタルカメラ（FinePix 700、富士写真フィルム（株））で撮影したJPEG画像をパソコンコンピュータに取り込み（図-2）、画像解析ソフトLIAS32 for Windows95 ver2.21を用いて被覆面積を計算した。被覆面積は、（1）式に従って被覆率に換算した。

$$\text{被覆率} = \frac{\text{被覆面積}}{\text{フォーゲンス面積}} \times 100$$

なお、LIAS32 for Windows95を使った画像解析は、マニュアル従って行った。被覆面積の計算方法を以下に示す。
パーソナルコンピュータに取り込んだ640×480 pixelsの撮影画像（図-2）は、一定の距離から撮影しているとはいえ、少なくとも距離ばらつきが生じる。そこで、LIAS32 for Windows95を使って、各撮影画像の相対的な長さ（スケール）を計測し、被覆面積の算出基準（画像読み取り精度 dpi）とした。なお、画像読み取り精度 dpiの計測は、フォーゲンスの1メッシュ（メッシュ径大区は縦12.1cm、横10.4cm、メッシュ径小区は縦12.1cm、横5.2cm）の水平方向の長さを基準とした。そして、被覆部分（供試植物）と背景部分（撮影ボードおよびフォーゲンス）の色データをサンプリングし、判別分析23により画像分類を行った（図-2）。被覆部分の画像分類の基準は、葉の明度が高い部分の色、葉の明度が標準的な部分の色および葉の明度が低い部分の色の3水準である23。また、背景部分の画像分類の基準は、撮影ボードの色およびフォーゲンスの色の2水準である。色データのサンプリング数は、各水準とも10サンプル、合計50サンプルとした。なお、画像分類は、画像画像に対して、上述した5水準のカテゴリーをヒークの目で見て判別し、これを入力して分類する教師付き分類を採用した23。画像分類で求めた判別式を用いて、撮影画像の被覆部分を赤色、背景部分を白色に変換し、2値化を行った（図-2）。その後、赤の部分を被覆面積と認識し、スケール計測で求めた画像読み取り精度 dpiに基づいて、被覆面積を計算した。

3. 結果
3.1 有意差検定の検討
10月27日の時点における平均被覆率について、密植区および精植区、単株区およびフォーゲンス区、そしてメッシュ径小区および大区の各試験区間の有意差検定を行った。しかし、供試植物の枯死により、3反復を確保できなかったものについては有意差検定を行わず、被覆率の平均値と標準偏差のみを示した（表-1）。
3.2 植栽間隔の違いによる平均被覆率の比較
異なる植栽間隔における平均被覆率の経時変化を、図-3および図-4に示す。植栽間隔が193の日の10月27日まで、各試験区とも平均被覆率が増加した。
10月27日の時点で各試験区を比較すると、密植区（メッシュ径小区・単株区；29.8％、メッシュ径大区・単株区；31.0％、メッシュ径小区・フォーゲンス区；30.2％、メッシュ径大区・フォーゲンス区；18.7％）の方が精植区（メッシュ径小区・単株区；17.8％、メッシュ径大区・単株区；10.4％、メッシュ径小区・フォーゲンス区；10.6％、メッシュ径大区・フォーゲンス区；7.7％）よりも、平均被覆率が高かった。密植区および精植区間の有意差検定を行った結果、メッシュ径小区・フォーゲンス区においては、密植区の方が精植区よりも、平均被覆率が有意に高かった（Welchの検定、p<0.05）。その他の試験区については、欠損値を生じたために有意差検定を行えなかった。

Fig. 2 Image analysis of photographic image.
1) Photographic image
2) Classified image
3) Two dimensional binary image

図-2 撮影画像の画像解析
3.3 誘引方法の違いによる平均被覆率の比較

誘引方法の違いによる平均被覆率の経時変化を、図－5および図－6に示す。植物後日数が193日の10月27日の時点で、各試験区とも平均被覆率が増加した。10月27日の時点で各試験区を比較すると、密植区・メッシュ径大区におけるフォーク状区（30.2％）および単区（29.8％）間の差が最も大きかった、単区（密植区・メッシュ径小区州：17.8％、密植区・メッシュ径大区州：10.4％、密植区・メッシュ径大区州：31.0％）の方がフォーク状区（密植区・メッシュ径小区州：10.6％、密植区・メッシュ径大区州：7.7％、密植区・メッシュ径大区州：18.7％）よりも平均被覆率が高い値となった。繊状区およびフォーク状区間の有意差検定を行った結果、繊状区・メッシュ径小区において、繊状区およびフォーク状区の平均被覆率に有意な差はみられなかった（Studentのt検定、p＜0.05）。その他の試験区については、株の枯れにより2回繰り返し検定を行った結果、繊状区・メッシュ径小区において、繊状区・メッシュ径大区の平均被覆率に有意な差はみられなかった（Studentのt検定、p＜0.05）。その他の試験区については、上記の理由により有意差検定を行えなかった。

密植区・繊状区においては、フォーク状区（30.2％）の方が、単区（29.8％）よりも平均被覆率の値は高かったが、その差は約0.4％であった。

図－3 異なる栽培間隔における平均被覆率の経時変化

Fig. 3 Effect of planting intervals for the ratio of covering fences (Vertical training plot)

図－4 異なる栽培間隔における平均被覆率の経時変化

Fig. 4 Effect of planting intervals for the ratio of covering fences (Horizontal training plot)

3.4 メッシュ径の違いによる平均被覆率の比較

メッシュ径の違いによる平均被覆率の経時変化を、図－7に示す。植物後日数が193日の10月27日の時点で、各試験区とも平均被覆率が増加した。10月27日の時点で各試験区を比較すると、密植区・繊状区におけるメッシュ径大区（31.0％）およびメッシュ径小区（29.8％）間の差が最も大きかった。メッシュ径小区（密植区・メッシュ径小区州：10.6％、密植区・フォーク状区州：30.2％、密植区・繊状区州：17.8％）の方がメッシュ径大区（密植区・フォーク状区州：7.7％、密植区・フォーク状区州：18.7％、繊状区・繊状区州：10.4％）よりも平均被覆率が高い値となった。メッシュ径小区およびメッシュ径大区間の有意差検定を行った結果、繊状区・繊状区においては、繊状区・メッシュ径小区の平均被覆率に有意な差はみられなかった（Studentのt検定、p＜0.05）。その他の試験区については、上記の理由により有意差検定を行えなかった。

密植区・繊状区においては、メッシュ径大区（31.0％）の方が、メッシュ径小区（29.8％）よりも平均被覆率は高かったが、その差は約1.2％であった。

図－5 異なる誘引方法における平均被覆率の経時変化

Fig. 5 Effect of training methods for the ratio of covering fences (Small size of a mesh plot)

図－6 異なる誘引方法における平均被覆率の経時変化

Fig. 6 Effect of training methods for the ratio of covering fences (Large size of a mesh plot)
図 7 異なるメッシュ径における平均被覆率の箇別変化
Fig. 7 Effect of sizes of a mesh for the ratio of covering fences.

表 1 2001年10月27日時点における各試験区の被覆率の平均値および標準偏差
Table 1 The mean and standard deviation of ratio of covering fences in each experimental plot on October 27, 2001

<table>
<thead>
<tr>
<th>試験区</th>
<th>被覆方法</th>
<th>メッシュ径</th>
<th>平均値</th>
<th>標準偏差</th>
</tr>
</thead>
<tbody>
<tr>
<td>僅</td>
<td>単状</td>
<td>小</td>
<td>23.7</td>
<td>1.79</td>
</tr>
<tr>
<td>僅</td>
<td>単状</td>
<td>中</td>
<td>23.8</td>
<td>0.50</td>
</tr>
<tr>
<td>僅</td>
<td>単状</td>
<td>大</td>
<td>24.5</td>
<td>3.16</td>
</tr>
<tr>
<td>試験区</td>
<td>被覆方法</td>
<td>メッシュ径</td>
<td>平均値</td>
<td>標準偏差</td>
</tr>
<tr>
<td>僅</td>
<td>単状</td>
<td>小</td>
<td>31.0</td>
<td>13.10</td>
</tr>
<tr>
<td>僅</td>
<td>単状</td>
<td>中</td>
<td>30.2</td>
<td>10.80</td>
</tr>
<tr>
<td>僅</td>
<td>単状</td>
<td>大</td>
<td>31.4</td>
<td>1.23</td>
</tr>
<tr>
<td>試験区</td>
<td>被覆方法</td>
<td>メッシュ径</td>
<td>平均値</td>
<td>標準偏差</td>
</tr>
<tr>
<td>僅</td>
<td>単状</td>
<td>小</td>
<td>26.2</td>
<td>2.29</td>
</tr>
<tr>
<td>僅</td>
<td>単状</td>
<td>大</td>
<td>22.7</td>
<td>1.79</td>
</tr>
<tr>
<td>僅</td>
<td>単状</td>
<td>大</td>
<td>29.8</td>
<td>8.50</td>
</tr>
<tr>
<td>試験区</td>
<td>被覆方法</td>
<td>メッシュ径</td>
<td>平均値</td>
<td>標準偏差</td>
</tr>
<tr>
<td>僅</td>
<td>単状</td>
<td>小</td>
<td>28.2</td>
<td>8.50</td>
</tr>
<tr>
<td>僅</td>
<td>単状</td>
<td>大</td>
<td>28.2</td>
<td>2.29</td>
</tr>
<tr>
<td>試験区</td>
<td>被覆方法</td>
<td>メッシュ径</td>
<td>平均値</td>
<td>標準偏差</td>
</tr>
<tr>
<td>僅</td>
<td>単状</td>
<td>小</td>
<td>11.4</td>
<td>1.23</td>
</tr>
<tr>
<td>僅</td>
<td>単状</td>
<td>大</td>
<td>14.6</td>
<td>3.16</td>
</tr>
<tr>
<td>僅</td>
<td>単状</td>
<td>大</td>
<td>31.0</td>
<td>13.10</td>
</tr>
</tbody>
</table>

* 番死により、データ不完全のものを欠損値として除去了、2反復のデータとして計算した。

4. 考察

4.1 実験計画の検討

実験では、外に上記の実生苗を試験したにもかかわらず、番死が発生し、2反復の実験区が生じたため、有意差検定を行えなかった。より正確な結果を得るためには、さらに反復数を増やして実験を行う必要があると考えられが、試験区の面積確保を考慮すると、今回は3反復が限度であった。今後、より正確な情報を得るためには、より均一であると考
メッシュ径小区の方がメッシュ径大区よりも平均被覆率が高くなった要因としては、次の2点が考えられる。まず第1に、ムの先端部の回旋軸回転運動によって描かれる楕円の曲率半径長および旋回時間とフッシュのメッシュ径（水平長さ）の関係である。被覆フッシュの帰着像から判断すると、メッシュ径小区の供試植物は、垂直方向に対して直線的にだけなく、斜め方向にも成長していたのに対して、メッシュ径大区では、垂直方向に対して直線的に成長していた。このことから、供試植物が垂直方向に対して直線的であり、なおかつ斜め方向に成長した方が、平均被覆率が高いことになる。
供試植物の茎の先端部の回旋軸回転運動によって描かれる楕円の曲率半径長を考慮すると、供試植物が一度巻き付いた支持体に再度巻き付くよりも、回旋軸回転運動中に、隣接の支持体に巻き付く方が時間的には短くなり、茎の伸長成長に有利に働くと推察される。なお、ム属の一種のStauntonia latifoliaの茎の先端部が回旋軸回転運動を1回転するのに要する時間は、3時間30分から5時間45分と報告されている。また、この実験で、ムの茎の先端部の回旋軸回転半径は、3～40cmとわがまきされている。しかしこの実験では、ムの茎の先端部の回旋軸回転半径が測定していないため、この点の考察は今後の研究に委ねられなければならない。

第2に、フッシュ径および供試植物の成長のメッシュ径（水平長）の関係である。木本性植物の供試植物は一般的に、最適な大きさをした植物体の構造を発達することによって、林冠に到達できることが知られており、実験に用いた供試植物の場合、メッシュ径の水平長が径（5.2cm）のものが長径（10.4cm）よりも供試植物の巻きおよび伸展の能力に効果的に作用することがわかった。

引用文献
1) ダーヴィン C. 著・渡辺に訳（1991）よしのばり植物-その運動と習性- 森北出版、東京、145pp.
4) 近藤三雄（1997）カラーリーオツする植物による環境緑化デザイン特性と用途, ソフトサイエンス社、東京、129pp.
5) 奥水義（1998）屋上緑化、社団法人日本造園学会編ランドスケープ体系第3巻ランドスケープと緑化、技報堂出版、東京、pp. 171-181.
8) 三条洋一（2000）ディジタルカラー画像の解析・評価 東京大学出版会、東京、187pp.
9) 長田正（1984）検索入門野草図鑑①つる植物の巻、保育社、大阪、206pp.
10) 沖中健（1984）つる植物の造園的利用に関する研究、千葉大園芸学、36 : 165-236.
11) 沖中健・松容通（1987）主要な壁面植造は、地元の植物の初期生長に関わる研究、造園雑誌、50 (5) : 90-95.
13) 沖中健（1998）立体緑化、社団法人日本造園学会編ランドスケープ体系第4巻ランドスケープと緑化、技報堂出版、東京、pp. 181-189.
14) 松容通・沖中健（1990）壁面緑化用つる植物の選定と下垂における生育特性に関する基礎的、造園雑誌、53 (5) : 115-120.
17) 齋藤武雄（1997）ヒートアイランド熾熱化する巨大都市、講談社、東京、210pp.
20) 田村義之・足立光一・富本和成・辻谷将明（1984）パソコン統計解析ハンドブックⅡ多変量解析編、共立出版、東京、pp. 112-137.
21) 山本一清（1977）LiA32 for Windows95. （http://hp.vector.co.jp/authors/VA008416/index.html）

（2002.6.30受理）