緑化された屋上における景観要素の違いが利用者の景観評価に及ぼす影響

佐々木ゆき 1)・岡田準人 1)・下村 孝 2)

1) 京都府立大学大学院人間環境科学研究院　Sci., Kyoto Prefect. Univ.
Grad. School of Human Environ.
2) 京都府立大学人間環境学部　Fac. of Human Environ., Kyoto Prefect. Univ.
simon@kpu.ac.jp

要旨：緑化された屋上の景観要素の違いが、屋上利用者に及ぼす心理的効果を明らかにするために、屋上パノラマ画像を用いたSD法による景観評価実験を行った。因子分析の結果、緑化された屋上の景観評価構成として、心理的、生理的体験、自然的認知、屋上認知的、および視覚的評価因子の5因子が抽出された。因子得点を用いて、周辺の景観要素の違いが、屋上利用者の心理的評価に及ぼす影響を調べた結果、屋上パノラマ画像に占める緑の割合が増加（相関係数R=0.627, 有意確率p=0.016）あるいは建物の割合が減少（相関係数R=0.707, 有意確率p=0.005）するに従って、心理的評価が高くなった。

キーワード：屋上緑化、屋上庭園、景観評価、パノラマ画像、景観要素、因子分析

SASAKI, Yuki, OKADA, Norto and SHIMOMURA, Takashi : The effect of various landscape elements on the landscape evaluation made by people who use roof gardens or green roofs

Abstract : We carried out landscape evaluation experiment by the semantic differential method using the roof panorama images to clarify how the difference of the landscape elements in the roof gardens and green roofs influence the psychology of people who use roofs. As a result of the factor analysis, the following 5 evaluation factors were understood as a landscape evaluation structure of roof gardens and green roofs: psychology, prospect bodily sensation, natural recognition, roof recognition and visual sense. Using the factor score, the effect of various landscape elements on the psychological evaluation of the roof users was examined. As a result, the psychological evaluation of the roof users rose, as the green regard rate increased (R=0.627, p=0.016) and as the building rate decreased (R=0.707, p=0.005) in the roof panorama images.

Key words : green roof, roof garden, landscape evaluation, panorama image, landscape element, factor analysis

1. はじめに

都市への人口集中によって自然が減少し、緑の持ち込みが望まれている。植栽面積の限られた都市に、緑を持ち込む方法の一つとして、屋上緑化に注目が集まっている。屋上緑化には、都市環境問題の緩和効果、景観の向上および人々に対する心理的効果が期待されている。これまでの研究では、緑による心理的効果として、安らぎ感の向上、ストレスの軽減、疲労の軽減、そして発音感受の程度を減少させる効果などが明らかにされている。ストレスの多い都市環境で生活する人々にとって、屋上緑化によってもたらされる緑は欠かすことのできないものになると考えられる。

東京都では平成13年4月に自然環境保護条例を改正し、平成14年4月1日以降、一定規模以上の敷地を有する新築・改築建築物の屋上緑化を義務づけた。同年5月には、国土交通省が緑化施設整備計画認定制度を創設し、「緑化重点地区」内に整備された緑化施設に対する固定資産税を軽減することとしている。また、平成14年10月には兵庫県も緑化条例により、一定規模以上の新築建築物への屋上緑化を義務づけた。その中、各地の自治体に至るまで、屋上緑化を含めた施設緑化への推進策がある。これらを受け、屋上緑化に関心を抱くビルオーナーは多く、今後も屋上緑化事例が増えることが予想される。

屋上緑化の範囲には、屋上に多様な植栽を施し庭園状に仕上げた屋上庭園、セダム等、通常は屋上緑化の双方が含まれている。しかし、多様な植栽の屋上緑化では、人々への心理的効果は異なるとの指摘があり、区別して考える必要がある。しかし、東京都の条例において屋上緑化の定義は、人の出入口および利用可能な建築物の屋根部分の植栽基盤を樹木、芝、および草化などで覆うこと
とされており、現時点では屋上庭園と、薄層緑化およびヤダムや芝などにより覆われた屋上緑化は、行政段階では同等に扱われているといえる。そのため、低コスト・低メンテナンスを実現する単一植栽や薄層緑化による施設の簡易な屋上緑化事例が増えることが危惧される。

現在のところ、屋上緑化の心理的効果に関する研究は限られている。岡崎ら114はスライド評価実験において、樹木の配置や形態、周辺の建物の有無が屋上の好ましさに影響することを明らかにした。しかし、評価に用いられたスライドは実際の屋上緑化事例を画像合成して作成したものであり、リアリティーに欠けるという欠点をもっている。また、長岡ら130は、実在する屋上緑化 11 事例（緑化されていない屋上 1 事例を除く）のビデオ画像を用いて景観評価実験を行い、緑化形態の違いが屋上緑化景観の評価構造に影響を与えることを明らかにしている。しかし、屋上の景観要素の物理量と心理的評価の関連を把握するには至っていない。また、屋上は地上とは異なり、空や隣接するビル群などとともに、高い場所から周りの景色が見渡される眺望（街並み、山並みなど）という景観要素を持っている140。したがって、緑化された屋上の景観が屋上利用者に与える心理的評価をより詳細に調べるには、景観の物理量と心理的評価の関連を明らかにする必要があり、多様な景観要素の物理量を数値化して評価対象の選定を行うことが求められているといえる。

そこで、本研究では、緑化された屋上景観の景観評価構造を把握するため、景観要素率の異なる実際の屋上緑化事例を撮影した屋上のパノラマ画像を用いて、SD 法による景観評価実験を行い、景観の物理量と心理的評価の関連を明らかにしようとした。

2. 研究方法

2.1 景観評価手法の検討

景観評価実験は、大きく分けて現地で評価を行う方法と、室内で評価対象を提示して評価を行う方法がある。室内評価実験の評価対象として、写真6、スライド19a、ビデオ画像13b、およびコンピュータ画像20などがよく用いられている。田中ら21は、写真やスライドを提示した心理評価実験では、風景写真の構図の評価に変化をもたらすかという問題を指摘した研究22を受けて、現実の景観の代用として評価媒体を用いる際の構図の差異が実験結果に及ぼす影響を定量的に明らかにする実験を行った。その結果、画像を水平方向へ移動させること、および視野角360°のパノラマ画像を提示することの有効性を明らかにした23。

以上から、本研究では、360°パノラマ画像を水平方向に動かしながら提示する手法を用いて景観評価実験を行った。

2.2 評価対象の撮影方法

予備調査とは別に、景観評価実験に用いるパノラマ画像を、2003年8月9日から23日にかけて撮影した。撮影位置は、いずれの場合も屋上全体を見渡せる位置に設定した。撮影方法は、三脚でデジタルカメラ（焦点距離：46 mm、画角：水平46°59′49.6″×垂直36°7′15.3″）を取り付け、水平方向に30°毎にカメラを回転させながら画像を撮影し、360°で合計12枚の画像を撮影した。なお、レンズの高さは、成人男性と成人女性の平均身長をした約164 cmとして、そして、画像処理ソフトPanorama Maker Ver3.0（Arc Soft, Inc.）を用いて、12枚の撮影画像から360°のパノラマ画像（垂直画角：36°7′15.3″）を作成した。撮影画像の角の違いが景観評価に及ぼす影響を調べた研究24よりと、撮影角の違いが評価に何らかの影響（主効果）を与えると考えられることから、撮影角と撮影対象の間に交互作用があることから、撮影対象ごとに角を決定する必要があるとしており、撮影角の違いがどの程度評価に影響するかはまだ明らかにされていない。そのため、本研究では撮影画像の垂直画角を標準的な角度レンズの垂直画角とした。

2.3 景観評価の対象と景観要素の算出

予備調査により関西の屋上緑化49事例を抽出した。抽出した49事例に対して、2003年5月26日から7月4日までにかけて現地調査を行い、日常的に人が立ち入って利用している緑化された屋上27事例を選び、写真撮影を行った。

景観評価実験に用いる屋上景観の評価対象を選定する基準として、屋上緑化の景観評価に関する先行研究13、14の知見を参考にして、屋上層積、緑化面積、緑視率、および眺望率を設定した。そして、編集したパノラマ画像から、以下に示す方法で画像内に占める景観要素の面積を測定し、緑視率（画像内に占める緑の割合）、建物面積（画像内に占める近景の建物および屋上の人工構造物の面積）、空視率（画像内に占める空の割合）、および眺望率（画像内に占める遠景の割合）など4つの景観要素率を算出した。なお、眺望率算出の際に関わった遠景は、緑視率、建物面積、空視率以外の景観要素である山並みや街並みなどの景観要素を含むものとした。作成したパノラマ画像をA4用紙にプリントアウトし、その上にトレーシングペーパーを重ねて各景観要素の輪郭を筆で描いた。そして、トレーシングペーパーを5 mm方眼の観察紙の上に置き、各景観要素の輪郭内のマス目（1マス=10 mm × 10 mm）を数え、1画像（全128マス）に占める各景観要素のマス数の比率を％で表し、景観要素率を算出した。マスを埋める領域が50％未満の場合は切り捨て0マスとし、50％以上は切り上げて1マスとした。27事例の屋上景観の画像を、屋上層積、緑視率、および眺望率を用いて分類を行い、最適な組み合わせと判断された15事例（対照区として、緑化されていない屋上1事例を含む）を抽出した（表1）。なお、分析に用いた15事例の景観要素率を、図1に示す。

2.4 SD法による実験の手順

実験は、2003年9月9日から20日にかけて、京都府立大学附屬図書館3階視聴覚室で行った。実験の参加者数は、京都府立大学および京都芸術総合大学の学生（男性21名、女性29名）であ
表-1 15事例の屋上の属性
Table 1 Attribute of the roof of 15 cases.

<table>
<thead>
<tr>
<th>屋上No.</th>
<th>建物の種類</th>
<th>所在地</th>
<th>屋上面積(m²)</th>
<th>緑化面積(m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>画像1</td>
<td>オフィスビル</td>
<td>京都市</td>
<td>545</td>
<td>480</td>
</tr>
<tr>
<td>画像2</td>
<td>デパート</td>
<td>大阪市</td>
<td>1073</td>
<td>157</td>
</tr>
<tr>
<td>画像3</td>
<td>大規模商業施設</td>
<td>大阪市</td>
<td>836</td>
<td>803</td>
</tr>
<tr>
<td>画像4</td>
<td>オフィスビル</td>
<td>大阪市</td>
<td>1073</td>
<td>518</td>
</tr>
<tr>
<td>画像5</td>
<td>マンション</td>
<td>大阪市</td>
<td>1600</td>
<td>600</td>
</tr>
<tr>
<td>画像6</td>
<td>公共施設施設</td>
<td>神戸市</td>
<td>600</td>
<td>250</td>
</tr>
<tr>
<td>画像7</td>
<td>オフィスビル</td>
<td>大阪市</td>
<td>1100</td>
<td>500</td>
</tr>
<tr>
<td>画像8</td>
<td>オフィスビル</td>
<td>大阪市</td>
<td>1100</td>
<td>500</td>
</tr>
<tr>
<td>画像9</td>
<td>大規模商業施設</td>
<td>大阪市</td>
<td>500</td>
<td>157</td>
</tr>
<tr>
<td>画像10</td>
<td>大規模商業施設</td>
<td>大阪市</td>
<td>1296</td>
<td>246</td>
</tr>
<tr>
<td>画像11</td>
<td>オフィスビル</td>
<td>京都市</td>
<td>420</td>
<td>263</td>
</tr>
<tr>
<td>画像12</td>
<td>デパート</td>
<td>京都市</td>
<td>542</td>
<td>152</td>
</tr>
<tr>
<td>画像13</td>
<td>オフィスビル</td>
<td>大阪市</td>
<td>397</td>
<td>223</td>
</tr>
<tr>
<td>画像14</td>
<td>公共施設施設</td>
<td>神戸市</td>
<td>1600</td>
<td>800</td>
</tr>
<tr>
<td>画像15</td>
<td>コンサートホール</td>
<td>京都市</td>
<td>400</td>
<td>133</td>
</tr>
</tbody>
</table>

図-1 15事例の景観要素率の内訳（緑色面積を降順に整理）
Fig. 1 Breakdown of landscape element rate of the 15 cases.

図-2 15事例の評価プロフィール
Fig. 2 Evaluation profile of the 15 cases.

り、年齢層は19〜34歳であった。参加者は全て大学生であり、年齢層も10代後半から30代前半に限られ、本実験結果はこの実験デザインの限界を考慮した上で適用されるべきである。なお、本来は、多様な属性の人々に実験に参加してもらう必要があるが、実験規模の制約や評価のばらつきなどの影響を考慮して、本実験では参加者を大学生に絞った。実験は、10名1回、9名1回、7名1回、6名2回、5名2回、そして2名1回として、各グループを独立させて行った。SD法の評価項目には、先行研究12）14）より抽出した21組の形容詞対（評価項目の順序および配置はランダムに行った）を使用し、15事例の評価対象は、Windows XP Home Edition（Microsoft Corporation, 1985-2001）上でコンピュータソフトFlash5.0（Macromedia, Inc.）を用い、72秒間で全画像を右から左へ水平移動で提示できるよう処理した。そして、15画像をパーソナルコンピュータおよび液晶プロジェクターを通じてランダムにスクリーン（寸法：縦145 cm×横145 cm）に投影（投影画面サイズ：縦90 cm×横120 cm）した。回答者には1画像の提示が終了することにより、評定用紙に7段階の評価得点（図2）を記入するよう求めた。実験時間は1グループあたり、約40分であった。

2.5 分析手法
SD法による景観評価実験で得られた評価項目ごとの評価得点の平均値を算出し、評価プロフィールを作成した（図2）。そして、全屋見緑化画像（画像1〜6、8〜15）の景観評価構造を把握するために因子分析を行った。因子分析は、固有値1以上の基準を設け、さらに因子の解釈の可能性も考慮して因子数を決定した。因子抽出法には最尤法を採用し、プロマックス回転後の因子負荷量の絶対値が0.400以上（標本抽出誤差および測定誤差を補償するための基準20）の評価項目を基準
として，因子を抽出した。因子名は，各因子において因子負荷量が上位のものを参考に命名した。そして，因子分析から求めた各因子の因子得点を用いて，各因子と各観測要素の景観要素率との相関関係を調べた。

3. 結果

3.1 各画像の景観要素率の相関分析

各画像の景観要素率間の相関関係を調べた結果，相関係数と建物率（R=0.823，p=0.000），および空調率と眺望率（R=0.544，p=0.036）で有意な相関がみられた（図3）。

3.2 因子分析

全屋上緑化画像（画像1～6，8～15）の因子分析を行った結果を，表2に示す。また，因子分析の適合度指標を表3に示す。

表2 全屋上緑化画像（画像1～6，8～15）の因子パターン

<table>
<thead>
<tr>
<th>評価項目</th>
<th>心理的評価因子</th>
<th>魅力的感覚評価因子</th>
<th>自然認知的評価因子</th>
<th>総上緑化的評価因子</th>
<th>食用的評価因子</th>
</tr>
</thead>
<tbody>
<tr>
<td>好しい</td>
<td>0.938</td>
<td>-0.080</td>
<td>-0.016</td>
<td>-0.001</td>
<td>-0.126</td>
</tr>
<tr>
<td>気持ちが良い</td>
<td>0.540</td>
<td>0.074</td>
<td>0.033</td>
<td>0.016</td>
<td>0.067</td>
</tr>
<tr>
<td>好ましい</td>
<td>0.576</td>
<td>0.043</td>
<td>0.043</td>
<td>0.016</td>
<td>0.048</td>
</tr>
<tr>
<td>よく暑い</td>
<td>0.713</td>
<td>-0.087</td>
<td>0.018</td>
<td>0.007</td>
<td>0.033</td>
</tr>
<tr>
<td>好しい</td>
<td>0.884</td>
<td>-0.027</td>
<td>0.169</td>
<td>0.028</td>
<td>0.277</td>
</tr>
<tr>
<td>大きが広い</td>
<td>-0.103</td>
<td>0.829</td>
<td>0.082</td>
<td>0.003</td>
<td>0.060</td>
</tr>
<tr>
<td>遠くの景色が見える</td>
<td>-0.085</td>
<td>0.786</td>
<td>-0.008</td>
<td>0.158</td>
<td>0.078</td>
</tr>
<tr>
<td>光が良い</td>
<td>0.063</td>
<td>0.781</td>
<td>0.014</td>
<td>0.138</td>
<td>0.047</td>
</tr>
<tr>
<td>開放的</td>
<td>0.305</td>
<td>0.860</td>
<td>0.016</td>
<td>0.085</td>
<td>0.031</td>
</tr>
<tr>
<td>広々とした</td>
<td>0.238</td>
<td>0.567</td>
<td>0.043</td>
<td>0.123</td>
<td>0.079</td>
</tr>
<tr>
<td>周囲の建築物がある</td>
<td>0.079</td>
<td>-0.429</td>
<td>0.024</td>
<td>0.000</td>
<td>0.072</td>
</tr>
<tr>
<td>芝の高さが多い</td>
<td>-0.068</td>
<td>-0.029</td>
<td>0.016</td>
<td>0.028</td>
<td>0.096</td>
</tr>
<tr>
<td>根の葉が多い</td>
<td>0.024</td>
<td>0.024</td>
<td>0.024</td>
<td>-0.010</td>
<td>0.152</td>
</tr>
<tr>
<td>高木がある</td>
<td>0.070</td>
<td>0.224</td>
<td>0.547</td>
<td>-0.120</td>
<td>-0.075</td>
</tr>
<tr>
<td>自然的</td>
<td>0.118</td>
<td>0.035</td>
<td>0.015</td>
<td>0.056</td>
<td>0.135</td>
</tr>
<tr>
<td>個別の</td>
<td>0.238</td>
<td>0.035</td>
<td>0.452</td>
<td>0.008</td>
<td>0.330</td>
</tr>
<tr>
<td>側面が増えるような</td>
<td>0.035</td>
<td>0.057</td>
<td>0.002</td>
<td>0.874</td>
<td>-0.037</td>
</tr>
<tr>
<td>屋上であると感じず</td>
<td>-0.019</td>
<td>0.035</td>
<td>0.002</td>
<td>0.846</td>
<td>0.011</td>
</tr>
<tr>
<td>境界がある</td>
<td>0.030</td>
<td>-0.065</td>
<td>-0.065</td>
<td>-0.026</td>
<td>-0.011</td>
</tr>
<tr>
<td>良い</td>
<td>0.570</td>
<td>0.307</td>
<td>0.000</td>
<td>0.026</td>
<td>0.126</td>
</tr>
</tbody>
</table>

+ 因子抽出法：主成分法
** 軸解析：プロマックス
*** 因子負荷量の絶対値0.4以上を有効因子
**** 各因子の影響を異質した因子項目，相互間係数から算出，他の因子の影響を無視した因子項目，部分相関係数から算出

表3 因子分析（最尤法）の適合度指標

<table>
<thead>
<tr>
<th>自由パラメータ</th>
<th>設計値</th>
<th>信頼性指標</th>
<th>情報量基準</th>
</tr>
</thead>
<tbody>
<tr>
<td>N=10</td>
<td>116</td>
<td>388.850</td>
<td>115</td>
</tr>
<tr>
<td>RMSEA</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>GFI</td>
<td>0.904</td>
<td>0.904</td>
<td>0.904</td>
</tr>
<tr>
<td>AGFI</td>
<td>0.904</td>
<td>0.904</td>
<td>0.904</td>
</tr>
<tr>
<td>AIC1</td>
<td>388.850</td>
<td>388.850</td>
<td>388.850</td>
</tr>
<tr>
<td>AIC2</td>
<td>388.850</td>
<td>388.850</td>
<td>388.850</td>
</tr>
<tr>
<td>BIC1</td>
<td>388.850</td>
<td>388.850</td>
<td>388.850</td>
</tr>
<tr>
<td>BIC2</td>
<td>388.850</td>
<td>388.850</td>
<td>388.850</td>
</tr>
<tr>
<td>CAC1</td>
<td>388.850</td>
<td>388.850</td>
<td>388.850</td>
</tr>
<tr>
<td>CAC2</td>
<td>388.850</td>
<td>388.850</td>
<td>388.850</td>
</tr>
<tr>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
</tbody>
</table>
図-4 各画像における心理的評価の因子得点の平均値と緑視率の相関関係

Fig. 4 Correlation of mean value of factor score of psychological evaluation and green rate in each image.

図-5 各画像における心理的評価の因子得点の平均値と建物率の相関関係

Fig. 5 Correlation of mean value of factor score of psychological evaluation and building rate in each image.

全屋上緑化画像（画像1～6，8～15）の因子分析の結果、「楽しい」、「気持ちが良い」、「好ましい」、「やすらぐ」などの心理的評価因子、「空間が広い」、「遠くの景色が見える」などの眺望感覚的評価因子、「緑の種類が多い」、「緑の量が多い」などの自然認知的評価因子、「高い場所にいるような」、「屋上であると感じる」を含む屋上認知的評価因子、「統一感がある」を含む視覚的評価因子の5因子を抽出した。

3.3 因子得点を用いた景観要素別各画像の相関分析

全屋上緑化画像（画像1～6，8～15）の因子分析の結果から得られた心理的評価因子の因子得点を用いて、心理的評価と各景観要素の相関関係を調べた結果を図-4および5に示す。心理的評価因子は、緑視率と正の相関関係が認められた（R=0.627，p=0.016）。また、心理的評価因子は、建物率と負の相関関係が認められた（R=-0.707，p=0.005）。

4. 考察

4.1 各画像の景観要素率の相関分析

緑視率と建物率の間に有意な負の相関がみられた（図-3）のち、緑視率と建物率の合計が、各画像における全景観要素率の約60％以上を占めていること（図-1）が大きな要因であると考えられる。すなわち、緑視率の増加および減少が、建物率の減少および増加に強く影響しているといえる。

4.2 因子分析

全屋上緑化画像（画像1～6，8～15）の因子分析の結果、心理的評価因子、眺望体験的評価因子、自然認知的評価因子、屋上認知的評価因子、および視覚的評価因子の15因子を抽出されたことから、これらの因子が屋上緑化景観の評価構造を形成していると考えられる（表-2）。また、因子分析（尤度法）のモデルとデータの適合度検定を行った結果、適合度指標（GFI）は0.952（≧0.900でモデルの適合性が高い1）が自由度調整済み適合度指標（AGFI）は0.949（≧0.900でモデルの適合性が高い1）であり、因子分析の結果が信頼性のあるものであることが示された（表-3）。

長岡ら11は、11事例の屋上緑化画像を、屋上緑化（単純植栽、混植植裁、洋風庭園、および和風庭園の3種類の緑化形態）に対して因子分析を行った結果、「見晴らしが良い」、「圧迫感がない」などの身体感覚的評価因子、「緑の量が多い」、「緑の種類が多い」を含む自然認知的評価因子、「統一感がある」、「整然とした」を含む視覚的評価因子、「屋上であると感じる」を含む空間認知的評価因子を抽出している。長岡らは、全屋上緑化をまとめて因子分析を行っていないが、これらの結果は、本研究の結果と類似しているといえる。また同時に、パノラマビデオ画像による景観評価実験と、パノラマスライド画像による景観評価実験にあまり差異が無いということを裏付ける結果なのかもしれない。しかし、本研究で用いたSD法の評価項目は、長岡らおよび岡部らの研究を参考に考慮した上で選定したが、心理的評価項目、眺望体験的評価項目、および自然認知的評価項目の多いものに対し、「高さ場所にいるような」および「屋上であると感じる」の屋上認知的評価項目や、「統一感がある」の視覚的評価項目が少なく、評価項目の偏りが上記の結果に少なからず影響しているのかもしれません。したがって、より多くの評価項目を用いて、改めて検証する必要があると考えられる。

4.3 因子得点を用いた景観要素別各画像の相関分析

相関分析の結果、心理的評価と緑視率には正の相関がみられ
れ（図4）, 心理的評価と建物高には負の相関がある（図5）ことが, 明らかになった。また, 心理的評価と観察室間の関係をみると, 観察室が約11〜75％の範囲において, 観察室の増加とともに心理的評価が高くなることがわかった（図4）。
さらに, 心理的評価と建物高の関係では, 建物高が約8〜96％の範囲において, 建物高が増加すると従って心理的評価が低くなることが明らかになった（図5）。
観察室と建物との間には有意に高い相関があり（図3）, 観察室および建物のどちらかが心理的評価に影響していると考えられるが, どちらの影響力が強いかは検証できていない。しかし, 図4および5から, 建物周辺の建物高が高い場合は観察室を高くして心理的評価を高め, 建物が高い場合は観察室を抑えて眺望や空気を高くすることで開放感を作り出すなど, 建物の景観要素の違いに応じて観察室をコントロールすることが, 綠化された建物景観の心理的評価を高める上で重要であると考えられる。また, 因子分析により抽出された自然認知的評価因子では, 「緑の種類が多い」の評価項目が「緑の量が多い」よりも高い因子負荷量を示しており, 観察室は単に緑の量を増やすだけではなく, 種類などの緑の質も考慮する必要があると考えられる。

岡村14は, スライドによる屋上緑化景観の評価実験を行った結果, 樹木の配置および形態を統一して, 周辺の建物の割合を変化させた結果, 周辺の建物が無いか, 好ましさの評価が高くなることを明らかにしている。また同様に, 周辺の建物の有無を統一して, 樹木の配置および形態を変化させると, 好ましさの評価が変化することも明らかにしている14。
以上のことから, 屋上緑化景観の心理的評価には, 目線率および建物が大きく影響していることが分かった。したがって, 屋上緑化を設計・計画する際には, 建物周辺の景観要素を十分に考慮に入れていた上で, 量および質とともに十分な緑を用いる必要があると考えられる。

本研究を行うにあたり, 現地調査や写真撮影に協力いただいた関係諸機関および担当者諸氏には深く感謝する。また, 景観評価実験に協力してくださった教員および学生の方々に謝意を表する。

引用文献
1) 服部環, 滝保博之 (1996) Q&A心理データ解析, 福村出版, 東京, pp.175-176。
3) 坂口剛, 梅千野晃, 井川一義 (1997) RC建物における屋上緑化の室内環境調整効果に関する研究, 日本緑化学会誌, 23(2): 93-10。
4) 坂口剛, 鈴木修二 (1990) 森林風景の測定評価の観点, 森林文化研究, 10: 33-40。
5) 梅千野晃, 荒井賢一 (1983) 屋上の芝生敷設による日照防し防止・焼けこみ防止効果, 日本建築学会環境工学論文集, 5: 133-140。
6) 市川恒一, 豊川勝生, 田中利美, 澤口勇雄 (1996) ニューラルネットワークによる風景の探索・ランドスケープ研究, 57(5): 189-192。
7) 石川明, 崎山和則 (1984) アロマによる緊張・疲労の軽減, フレグランスジャーナル, 64: 32。
9) 近藤三雄, 川山貴司 (1989) 室内等の緑によるVDT作業者がもたらす視覚労の回復効果に関する実験的研究, 造園雑誌, 52(5): 139-144。
10) 二木幹, 井藤興平 (1986) 建物の明暗に対する心理的減衰効果に関する研究, 造園雑誌, 48(5): 85-90。
12) 宮本浩, 大井井行, 平手博太郎, 安岡正人 (2003) スライドを用いた都市景観評価に視覚設計が及ぼす影響に関する研究, 日本建築学会計画系論文集, 663: 69-75。
15) 山田宏 (2001) 上屋緑化のすべてがわかる本, インフラクション/環境緑化新聞, 東京, 16pp。
16) 齋藤馨, 古谷勝則, 菅野重康 (1986) ビデオ画像による景観評価特性について, 造園雑誌, 49(5): 179-184。
18) 品田賞 (1980) ヒトと緑の空間, 東海大学出版, 東京, pp.299。
19) 多田俊一, 金井孝二郎 (1996) 実物およびスライド提示による森林が人間にもたらす生理・心理的効果の比較, ランドスケープ研究, 59(5): 161-164。
20) 田中敏 (1996) 実践心理データ解析問題の発想・データ処理・論文の作成, 新潮社, 東京, pp.242。
24) 吉田誠, 槇内憲久, 桜井慎一, 持野高広 (1997) 超高層マンションからの眺望価値に関する研究, 建設計画論文集, 32: 487-492。

(2004.6.19 受理)