日本統計学会誌
Online ISSN : 2189-1478
Print ISSN : 0389-5602
ISSN-L : 0389-5602
AN ITERATED VERSION OF THE GAUSS-MARKOV THEOREM IN GENERALIZED LEAST SQUARES ESTIMATION
Yasuyuki Toyooka
著者情報
ジャーナル フリー

1987 年 17 巻 2 号 p. 129-136

詳細
抄録
In the general linear model with covariance structure, depending on an unknown parameter vector, it is shown that the greatest lower bound for the risk matrix of the generalized least squares estimator (GLSE) constructed with covariance structure estimated from the iterated residuals is that of the Gauss-Markov estimator. A sufficient condition for the existence and the unbiasedness of the GLSE based on iterated residuals is given. It is shown that the use of the iterated residuals does not improve the risk matrix of GLSE through terms of order n-2 relative to that of the two step estimator.
著者関連情報
© Japan Statistical Society
前の記事 次の記事
feedback
Top