Enzyme immunoassay による t-PA の
高感度測定法について

綾引 洋一* 鎌目 研吾** 吉田 正也***
高田由美子*** 高田 明和***

Characterization of Various Antibodies Against Tissue
Plasminogen Activator using Highly Sensitive Immunoassay

Yoichi WATAHIKI*, Kengo SHIZUME**, Masaya YOSHIDA***,
Yumiko TAKADA*** and Akikazu TAKADA***

Key words: plasminogen, tissue plasminogen
activator, enzyme immunoassay

Polycional and monoclonal anti-tissue plasminogen activator (t-PA) anti-
bodies were characterized by using enzyme immunoassay (EIA) in which
β-d-galactosidase was coupled to anti-t-PA antibody (Fab'). 2:2 B10 and 1:3
G5 antibodies, specific for both one-chain and two-chain t-PA, strongly bound
with one-chain t-PA purified from cultured melanoma cell lines, but 1:3 C5
antibody bound weakly with such t-PA. When polyclonal t-PA antibody
was used as the first reaction antibody immobilized on silicone pieces, anti-
t-PA polyclonal antibody mainly reacted with 2:2 B10 or 1:3 C5 antigenic
determinant. When t-PA levels in the plasma were determined, the presence
of EDTA enhanced the sensitivity of t-PA determination by the present EIA
technic. 2:2 B10 monoclonal antibody detected a part of t-PA molecules in
the plasma that polyclonal antibody detected. T-PA was mainly detected
in the endothelial cells, but not in the muscular layer of inferior mesenteric
artery when immunochemical technic was used where polyclonal t-PA anti-
body was applied.

* 群松医科大学第二外科 [〒431-31 群松市若田町 3100], Department of Surgery, Hamamatsu University
School of Medicine, Hamamatsu, Japan.
** 同 神経外科, Department Neuro-surgery, Hamamatsu University of Medicine, Hamamatsu, Japan.
*** 同 第三生理, Department of Physiology, Hamamatsu University School of Medicine, Hamamatsu,
Japan.
はじめに

Tissue plasminogen activator (t-PA) は、Urokinase に比べ、fibrin との親和性が強く、しかも、fibrin 存在下で plasmin 活性を促進するため、血栓症の治療に有用であるとの報告も多い1)。このため、種々の t-PA 測定法が報告されている2〜5)。今回、われわれは高感度の Enzyme immunoassay (EIA) による t-PA 測定法を開発したので報告する。

I. 方法

EIA の一次抗体には、t-PA に対する monoclonal 抗体を用い、monoclonal 抗体及び純化 t-PA は、Dr. P. Wallen (University of Umea, Umea, Sweden) から恵贈された。2:2 B10 と 1:3 G5 は、一本鎖と二本鎖の t-PA に反応し、1:3 C5 は、一本鎖のみに反応する。monoclonal 抗体の作成は、Kearny ら6)，Köhler ら7) の方法によった。t-PA は、melanoma の細胞培養液から純化されたもので、一本鎖のものが95%以上であり、比活性は、218000 IU/mg である。

二次抗体には、純化 t-PA を家兎に免疫して得た polyclonal 抗体を、酵素には、β-Galactosidase (β-Gal)8〜10)、または、Horse radish peroxidase (HRP) を用いた。

II. 結果

t-PA の検量線をみると（図1）、酵素として β-Gal を用いた方が感度が良く、0.05 ng/ml 程度まで測定可能であった。また、一次抗体に用いた monoclonal 抗体（1:3 C5, 1:3 G5, 2:2 B10）を比較すると、1:3 G5, 2:2 B10の方が感度が良好であった。一方、一次抗体として polyclonal 抗体を用いると感度が低下した。

血漿の t-PA 検出時の EDTA の影響をみると、血漿に種々の濃度の t-PA を加え、その値を測定した（図2-A)。EDTA の存在しない際には、実際の値より低く算出されるが、EDTA を加えると、ほぼ正確な値が得られた。EDTA の効果については、Rijken ら11) によっても同様の報告がなされているが、作用機序は不明である。一方、heart extract では、EDTA の影響はなかった（図2-B)。

以上から、一次抗体に 2:2 B10、二次抗体に polyclonal 抗体、酵素に β-Gal を用い、EDTA を加えて健康成人の血漿中の t-PA 値を測定すると、5.74 ± 0.22 ng/ml であった。

polyclonal 抗体を用い、酵素抗体間接法により、人を末梢動脈（IMA）における t-PA の局在を調べたが、t-PA は、血管内皮にのみ認め、筋層内には認めなかった。

III. 結論

高感度 EIA による t-PA の定量法について報告した。EIA の一次抗体として 2:2 B10、二

Fig. 1: Standard curves obtained from Enzyme immunoassay using β-Galactosidase and Horse radish peroxidase.

Fig. 1 shows standard curves of the determination of purified t-PA using anti-polyclonal t-PA antibodies coupled with β-Galactosidase or Horse radish peroxidase. Gradual increase in fluorescence intensity between 0.01 and 0.1 ng/ml was also observed. On the other hand, use of Horse radish peroxidase resulted in little change in the optical density at 492 nm even up to 1 ng/ml. These result show that use of β-Galactosidase give more sensitive assays for the determination of t-PA than use of Horse radish peroxidase does.
Effects of EDTA on the sensitivity of Enzyme immunoassay

Human plasma or heart extract was added with various amounts of t-PA. Plasma or heart extract was then added with 5 mM EDTA, and the calibration curves of t-PA in the plasma or heart extract were obtained in the presence or the absence of EDTA.

Fig. 2-A shows that the calibration curve of pure t-PA was similar to t-PA added to the plasma in the presence of EDTA, but in its absence the calibration curve was lower. On the other hand the presence or absence of EDTA did not influence the calibration curve of t-PA in the heart extract (2-B).

References

conjugate and its applicability for insulin assay.

