【論文】

2 種類の潜熱蓄熱物質による混合材料の融解特性
Melting Characteristic of Mixtures of Two Kinds of Latent Heat Storage Material

塚部明彦*, 劉植秀*, 春木直人*, 金田彰良*,
Akihiko HORIBE, JikSu YU, Naoto HARUKI, Akihira KANEDA,
町田明登**, 加藤雅士**
Akit0 MACHIDA, Masashi KATO

本研究では，工場から出る 100℃〜250℃の中間温度域の廃熱を利用するため，潜熱蓄熱システム
で利用可能な相変化物質としてエリスリトールとマンニトール，およびこれらの混合物の基礎的融解
特性に関する実験を行った。エリスリトールとマンニトールの融点，混合物の融解ピーク温度および
潜熱量を DSC で測定し，さらに試験管に入れた試料の融解挙動をデジタルカメラで観察した。その結
果 1)混合物のマンニトール含有率が 10〜40mass%と 50〜65mass%，および 70〜90mass% の時にそれ
ぞれ 1 ヶ所，3 ヶ所，2 ヶ所の融解ピーク温度が現れることを確認した。2) 混合物の基礎的融解挙動
観察では，凝固融解の繰り返しによって挙動が変化しないこと，固相と液相の密度差が融解挙動に影
響を与えることを確認した。

In this study, in order to use waste heat in middle temperature region (100℃〜250℃) from
factories, it is investigated about fundamental melting characteristic of crytthritol, mannitol, and their
mixtures as phase change materials (PCMs), which are applicable for latent heat thermal energy
system. The melting point of erythritol and mannitol, melting peak temperature of their mixtures, and
latent heat were measured by differential scanning calorimetry (DSC). The melting behavior of these
PCMs put in the test tube was observed by the digital camera. The acquired conclusions are; 1) In the
DSC measurement, it was found that at mannitol content from 10 to 40mass% and from 70 to
90mass%, these mixtures have one and two melting peak temperature, respectively, and at mannitol
content from 50 to 65mass%, it have three melting peak temperature. 2) In fundamental melting
behavior of mixtures, it was confirmed that the melting behavior with repeated solidification and
melting process does not change, and the density difference of solid phase and liquid phase affects the
melting behavior.

[Keywords: Phase change materials, Differential scanning calorimetry, Melting peak temperature,
Mixture, Erythritol, Mannitol]

1. はじめに

現在，自然エネルギーの有効利用が期待されているが，
太陽光などの自然エネルギーは，天候など不確定な要素
により供給が安定しないため，一時的にエネルギーを蓄
え必要なものに取り出すようなエネルギーの貯蔵シス

* 岡山大学大学院自然科学研究科。〒700-8530 岡山市北区東岡山中
 3-1-1. Graduate school of Natural Science and Technology, Okayama
 University, 3-1- 1, Tsushima-naka, Kita-ku, Okayama 700-8530.
 FAX: 086-251-8048, E-mail: horibe@mech.okayama-u.ac.jp
** 株式会社前川製造所技術研究府，〒302-0118 群馬県筑摩郡立
 沢村町 MFG. CO., LTD, 2000, Tatsuzawa, Moriya, Ibaraki,
 302-0118.
 FAX: 0297-48-5170, E-mail: akit0-machida@mayekawa.co.jp

テムが必要不可欠である。また，工場などの廃熱を蓄え，
必要なとき，必要な場所で利用することが可能であれば，
全体として省エネルギー化が図れる。このような理由か
ら，現在，エネルギー貯蔵システムの開発が盛んに行わ
れている。その一つとして物質の相変化を利用し，エネ
ルギーを高密度で蓄える潜熱蓄熱システムがある。

これは物質の相変化ではなく熱を利用して蓄えるため
高密度でエネルギーを貯蔵でき，一定温度での蓄熱が可
能である。しかし，相変化の温度が利用温度付近にある
物質しか使用できないことや，相変化の際の体積変化に
よる装置の負担などの問題がある。そのため，蓄熱材を
どのように選定するかが極めて重要な要素であり，現在，
各温度帯で融点を持っているさまざまな潜熱蓄熱材につ
いて検討されている。例えば中間温度域の約 100℃から
150℃の間では高密度蓄熱材であるポリエチレン（HDPE）を利用した研究が行われている[1,2]。また、有機物であるエリスリトールと無機物であるMgCl₂・6H₂Oを混合した研究では約150℃で120kJの潜熱量を持っていることが報告されている[3]。一方、10℃から50℃間では、融点が異なる2、3種類の有機物を混合し、各混合割合における潜熱量について研究されている[4-7]。

本研究では、工場から出る中間温度域の廃熱を熱源として使うことを想定し、融点が100℃～250℃の間にある潜熱蓄熱材の中で大きな潜熱量を持つ2種類の蓄熱蓄熱物質を混合することによって、融点ピーク温度や潜熱量を任意に調節する可能性に着目し、融解特性を実験的に検討した。なお、一般に固－液相変化で液相と固相が平衡を保つ温度を融点であり、本報告では、純物質とみなせるエリスリトールおよびマンニトールの融解時の潜熱吸収ピーク温度を融点とし、混合物の融解時の潜熱吸収ピークを示す複数の温度を融解ピーク温度[8]として示します。

2. 潜熱蓄熱材の選定

中間温度域（100℃～250℃）の排熱を有効利用するために、融点や潜熱が適切なものと選定する必要があります。Fig.1に100℃～250℃における代表的な潜熱蓄熱物質の融点（Tₘ）と潜熱量（ΔL）の関係を水和塩（△）、有機物（○）、溶融点（□）に分けて示す[9-11]。その中で水和塩が加熱により水が分離する性質を持っており、中高温域までの使用には適さないと考えられる。また、一般的に水和塩は有機物よりも潜熱量が大きいとされているが、Fig.1から100℃以上の水和塩の潜熱量は比較的小さいことが分かる。

そこで、本研究では有機物系の蓄熱物質の中でも特に潜熱量が大きく、食品添加物として使われるように無害な物質である糖アルコール類のエリスリトールおよびマンニトールを蓄熱材として選定し、融点温度差が50℃程度ある両物質を混合することで混合物の融点ピーク温度が150℃程度の中間温度域にて潜熱量を持つ潜熱蓄熱物質として用いることができると主に検討する。

本実験で用いたエリスリトールおよびマンニトールは多価アルコールの糖アルコール類であり、それぞれ（HOCH₂（CH₂OH）₃CH₂OH；純度97.0%以上のmeso-Erythritol（Wako製）と（HOCH₂（CHOH）₆CH₂OH）；純度99.0%以上のD-mannitol（Wako製）である。公表されている値として、Table 1にエリスリトール99%[11]、エリスリトール主成分の蓄熱材[12]、食品添加物D-マンニトール（日研化学製）[13]の熱物性値を示す。

3. 実験装置および実験方法

3.1 DSC測定

エリスリトール、マンニトール、およびこれらの混合物の融点、融解ピーク温度および潜熱量の測定には示差走査熱量分析装置（DSC；Rigaku, ThermoPlus 2/DSC8270, 精度：温度±3％、潜熱量±5％）を用いた。用いる試料は5.6mgになるよう電子天秤（精度±0.1mg）で重量を測定した。DSC測定は昇温速度5K/minの条件で行った。

3.2 融解および凝固実験

本研究で使用した、融解・凝固挙動を観察するために実

![Fig. 1 Latent heat of melting point PCMs[9-11]](image)
実験装置の概略図を Fig. 2 に示す。
実験装置はオイルバス、試験管（φ 25mm ×200mm; Pyrex 製）、オイルバス内の温度を均一にするための摺拌器に由って構成されており、熱電対（素線径 φ 0.1mm、K 型）、オイルバスの熟媒体にはシリコンオイル（TSF458；Momente 製）を用いた。融解実験では、オイルバスの初期温度を 100℃とし、オイル内に試料の入った試験管を設置する。その後、十分時間を経て試料温度が 100℃付近に安定した後、オイル温度を 4K/min の速度で 180℃まで上昇させながら実験を開始する。この時、試験管内試料を中心に熱電対を挿入し、温度を測定した。

4. 実験結果

4.1 DSC による測定結果
まず、エリスリトールとマンニトールの DSC 測定結果をそれぞれ Fig. 3, 4 に示す。ここに示したグラフは DSC の測定結果のうち代表的なグラフであり、グラフの中に示した融点と潜熟量の数値は測定 6 回分の平均値である。DSC 測定結果において純物質の場合は、ピークの両側の最大傾斜点で引いた接線の交点温度を融点（Tm）とし、一方、混合物の場合は、融解ピーク温度（Tp）として示した。融解潜熟量（L）は、ピーク温度が一つの場合、基準線とピークで囲まれた面積から算定している。また、ピーク温度が複数の場合は、各極大点と基準線を垂直に結んだ線を潜熟領域の境界で分けた面積から算定している。Fig. 3, 4 に示すようにエリスリトールは融点 119℃、潜熟 337kJ/kg、マンニトールは 168℃で 336kJ/kg となるデータを得た。エリスリトールの測定値と Table 1 に示した純度

Fig. 3 DSC analysis result of pure erythritol

Fig. 4 DSC analysis result of pure mannitol

Fig. 5 DSC analysis result of content mannitol 30mass%

Fig. 6 DSC analysis result of content mannitol 50mass%
次にFig. 6のマンニトール含有量50mass%の結果では、3ヶ所のピーク温度が面しており、各温度で吸収する潜熱量も分かれて、各温度の潜熱量が少なくなっていることが確認できた。

一方、Fig. 7に示すマンニトール含有量70mass%の測定では2ヶ所のピーク温度が確認できた。低温側のピーク温度は103℃で81kJ/kgの潜熱量を持ち、高温側では151℃で比較的高い201kJ/kgの潜熱量を持っている。このようなに、純粋物質であるエリスリトールとマンニトールよりピーク温度が約15℃低下し、溶解している。物質を混合した場合、物質の分子間の間に他の物質が入ることで凝固する際に妨害され、また分子間の相互作用の力が緩くなるため混合物の融点低下が起こることが報告されており[14]。本実験の混合物のピーク温度低下もこの理由によると考えられる。以上より、エリスリトールとマンニトールを混合することによって混合物のピーク温度を調節できることが確認された。

Fig. 8はエリスリトールとマンニトールの融点（T_m）、混合物の各割合のピーク温度（T_p）と潜熱量（L）の測定結果を示す。潜熱量は各ピーク温度における融解潜熱量の合計を示している。Fig. 8から分かるようにマンニトールの含有量が10mass%〜40mass%までの割合では、ピーク温度は1ヶ所現れ、50mass%〜65mass%までの割合では、3ヶ所が現れている。一方、マンニトール含有量70mass%〜90mass%までは2ヶ所のピーク温度となっている。Fig. 8よりマンニトール含有量70mass%時のピーク温度が本研究で目指している温度域の約150℃に一番近いため、以下に本混合を中心に基礎的融解特性を検討する。

なお、本研究で選択したマンニトール含有量70mass%混合物（以下70mass%混合物と称する）の融解時の安定性を確認するため、5K/minの昇温速度で測定を6回繰り返した測定結果をFig. 9に示す。Fig. 9に示すように高温側と低温側のピーク温度が安定していることが確認された。

4.2 融解実験結果

エリスリトールとマンニトールの混合物を実際の蓄熱システムで用いる際には、融解凝固サイクルを繰り返すことによる蓄熱吸収・放出挙動の変化の有無や過冷却の影響など様々な蓄熱挙動について検討する必要がある。
Fig. 10 Melting temperature of erythritol, mannitol and on the time change

Fig. 11 Melting temperature of mannitol content 30mass% on the time change

Fig. 12 Melting temperature of mannitol content 70mass% on time change

本研究では、まず、混合物が融解時にどのような挙動を示すか確認するため、試料を入れた試験管をオーブンガスの中に設置し、基礎的な融解実験を行った。試料は70mass%混合物および30mass%混合物と、参照のための純物質のエリスリトールとマンニトールである。融解過程における温度変化をFig. 10～12に、可視化写真をFig. 13にそれぞれ示す。

なお、Fig. 11、12に示す30mass%混合物と70mass%混合物では再現性を示すために10回分のデータを記載している。Fig. 10よりエリスリトールは約119℃、マンニトールは168℃で明らかに温度勾配の変化が生じており、Fig.13の写真からも融解していることが分かる。エリスリトールは、融解実験開始から約4minで試料の上部から融解が徐々に進行し、約14minにて融解が終わるまで下部へ順に融解している。エリスリトールは液相状態（1300kg/m³）と固相状態（1480kg/m³）で180kg/m³の密度差があるため、沈みやすく、周囲から融解しながら沈降したものと考えられる。次にマンニトールの場合は、約17minにて試料端部からの融解開始が確認され、固体部分が球状を維持しながら小さくなると共に、試験管の下部に沈んだ後に融解することが確認できた。エリスリトールに比較してマンニトールは液相状態（1386kg/m³）と固相状態（1403kg/m³）の密度差は17kg/m³と小さかったため、沈降するのに時間がかかったと考えられる。

また、30mass%混合物では、DSCの測定結果から分かるように一つのピーク温度（約114℃）を示すため、その溶融区間がFig. 11に現れている。Fig. 11より約4minにて融解が開始したと認められ、このときの試料温度約108℃であり、Fig.13に示すようにエリスリトールと同様、試料上部から融解開始し、密度差により沈降しながら融解している。しかし、エリスリトールと異なりマンニトールのように球形状を維持しながら融解している。また、Fig.11では溶融区間が約13min（約118℃）で終わるよう見えるが、Fig.13の可視化写真では14min（約140℃）で固相が残っている。これはDSCの測定結果において約15min～20minまで溶融区間が現れているように、30mass%混合物中のマンニトールが融解するために熱量を要した影響と考えられる。

一方、70mass%混合物では、DSCの測定結果に示したようにピーク温度が低温側（約103℃）と高温側（約150℃）二つあるため、それぞれの溶融溶融区間が現れている。まず、Fig. 12、13より低温側の溶融区間、約103℃に当た
<table>
<thead>
<tr>
<th>PCM</th>
<th>Melting process</th>
</tr>
</thead>
<tbody>
<tr>
<td>Erythritol</td>
<td>![Image of Erythritol melting process]</td>
</tr>
<tr>
<td>C<sub>m</sub> = 30 mass%</td>
<td>![Image of Erythritol melting process]</td>
</tr>
<tr>
<td>C<sub>m</sub> = 70 mass%</td>
<td>![Image of Erythritol melting process]</td>
</tr>
<tr>
<td>Mannitol</td>
<td>![Image of Mannitol melting process]</td>
</tr>
</tbody>
</table>

Fig. 13 Visual observations on melting of erythritol, mannitol and their mixtures on the time changes

約4minから約10minまで試料上部から徐々に融解するが確認できた。これはエリスリトールから融解が開始したと考えられる。その後、約10minから18minまでやや緩やかな温度変化となっており、マンニトールの融点より低い約160℃で相変化が終わる。その時、試料の外周部から球形に溶け、密度差により試料が下部に沈んで融解しており、マンニトールの融解挙動と酷似していることが判明した。

5. おわりに

本研究では、エリスリトールとマンニトールの混合物の融解挙動を観察し、以下の結論が得られた。

1. DSCの測定結果において混合物のマンニトール含有量が10~40mass%と50~65mass%，および70~90mass%の時にそれぞれ1ヶ所，3ヶ所，2ヶ所の融解ピーク温度が現れることがわかった。特に70mass%混合物は150℃で融解ピーク温度とした温度帯で200kJ/kgの潜熱を示していることを確認した。
2. エリスリトールとマンニトールを混合した場合、混合物の融解ピーク温度の低下現象を確認した。
3. 混合物の基礎的融解挙動観察では、凝固融解の繰り返しによって挙動が変化しないこと、固相と液相の密度差が融解挙動に影響を与えることを確認した。

本報告は、独立行政法人新エネルギー・産業技術総合開発機構（NEDO）の委託業務の結果得られた成果を活用しています。

NOMENCLATURE

- C_m : Mannitol contents, mass%
- f_{lt} : Heat flow, mW
- L : Latent heat, kJ/kg
- t : Time, min
- T : Temperature, °C
- T_m : Melting temperature, °C
- T_p : Melting peak temperature, °C
- T_{ed} : Temperature of oil bath, °C

参考文献

[Received Feb. 23, 2011, Accepted July 2, 2011]