「バントテン酸カルシウム」の各種細菌の発育に及ぼす影響に就て（第5回報告）

特に「バントテン酸カルシウム」と高級「アルコール」との共同作用に就て

（大院女子医学部微生物教室）（主任 大澤教授）

助手 大星 瑠子

「バントテン」酸（以下「バ」酸）と単糖類、二糖類、三糖類及び多糖類との共同作用に就いては既に前回に述べたので、ここには引き続き「バ」酸と高級「アルコール」との共同作用に就いて記す。

材料及び方法

材料、A、「バ」酸基本液及び培養基は前回と同様である。

B. 高級「アルコール」として「グリセリン」、「エリトリツット」、「アドニツット」、「マンニツット」、「ツルピツット」（以下夫々「G」、「E」、「A」、「M」、「Z」、「S」（以上 Merck 製品）の6種を用ひた。C. 使用菌株は前回と同じ。

方法、前回と同様（但し「G」は1％の割に含有せしめた）

成績

1. 「チフス」菌：「G」は「バ」酸との共存下では影響が無いが夫々の単独時に比してやや劣り、「E」も同様であるが糖單獨時に比してやや進歩され、「A」は夫々の単独時に比してやや劣り軽く抑制される。「M」は共存時著明に促進作用を示すが200γ「バ」酸と共存すれば糖単獨に及ばず。「Z」は共存時のみが促進を示す。「S」も良好な促進作用を示すが1γ「バ」酸との共存時は糖単獨時に及ばない。（第1表参照）

第1表 「バ」酸、糖、及び「バ」酸加糖培地に於ける菌の発育状況

<table>
<thead>
<tr>
<th></th>
<th>200γ「バ」</th>
<th>1γ「バ」</th>
<th>50γ糖</th>
<th>1万γ糖</th>
<th>200γ500γ「バ」+糖</th>
<th>1γ500γ「バ」+糖</th>
<th>200γ1万γ「バ」+糖</th>
<th>1万γ「バ」+糖</th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td>ダリセリシント</td>
<td>262</td>
<td>123.0(0.09)</td>
<td>235</td>
<td>1.10(0.04)</td>
<td>208</td>
<td>98(-0.01)</td>
<td>173</td>
<td>10(0)</td>
<td></td>
</tr>
<tr>
<td>エリトリツット</td>
<td>107</td>
<td>1.41(0.15)</td>
<td>93</td>
<td>0.87(-0.06)</td>
<td>95</td>
<td>1.25(0.1)</td>
<td>83</td>
<td>1.0(0)</td>
<td></td>
</tr>
<tr>
<td>アドニツット</td>
<td>262</td>
<td>1.23(0.09)</td>
<td>197</td>
<td>83</td>
<td>0.93(-0.03)</td>
<td>172</td>
<td>0.81(-0.09)</td>
<td>162</td>
<td>10(0)</td>
</tr>
<tr>
<td>マンニツット</td>
<td>82</td>
<td>0.85(-0.07)</td>
<td>83</td>
<td>254</td>
<td>0.93(-0.06)</td>
<td>192</td>
<td>2.60(0.41)</td>
<td>252</td>
<td>10(0)</td>
</tr>
<tr>
<td>ツルピツット</td>
<td>107</td>
<td>1.41(0.15)</td>
<td>93</td>
<td>0.87(-0.06)</td>
<td>95</td>
<td>1.25(0.1)</td>
<td>83</td>
<td>1.0(0)</td>
<td></td>
</tr>
<tr>
<td>ソルピツット</td>
<td>262</td>
<td>1.23(0.09)</td>
<td>235</td>
<td>1.10(0.04)</td>
<td>208</td>
<td>98(-0.01)</td>
<td>173</td>
<td>10(0)</td>
<td></td>
</tr>
</tbody>
</table>

2. 「バラチフス」A菌：「G」は「バ」酸と共存下で促進作用を示すが単独時には及ばず、「E」、「A」も夫々の単獨時に及ばず。「M」は共存時に著明な促進作用を示すが200γ「バ」酸と共存すれば単獨に及ばず。「Z」、「S」は夫々の単獨時に比し良好に促進する。（第2表参照）

3. 「バラチフス」B菌：「G」は「バ」酸との共存

では単獨に及ぼず、「E」は単獨では強き抑制作用を示すが「バ」酸との共存では殆ど影響無く、「A」は各単獨時に比しやや劣り、「M」は夫々単獨時の中間にあり、「Z」は共存で良好な促進作用を示す。「S」は促進性を示すが糖單獨時には及ばない。（第3表参照）

4. 志賀菌：「G」は軽い抑制作用を示し之は
第2表 「バ」酸根、及び「バ」酸加塩培地に於ける菌の育育状況

<table>
<thead>
<tr>
<th>培地</th>
<th>20γ「バ」</th>
<th>1γ「バ」</th>
<th>5000γ糖</th>
<th>1万γ糖</th>
<th>20γ5000γ「バ」+糖</th>
<th>1γ5000γ「バ」+糖</th>
<th>20γ1万γ「バ」+糖</th>
<th>1γ1万γ「バ」+糖</th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td>グリセリン</td>
<td>325</td>
<td>365</td>
<td>540</td>
<td>540</td>
<td>540</td>
<td>540</td>
<td>540</td>
<td>540</td>
<td>325</td>
</tr>
<tr>
<td>エリトロトット</td>
<td>1.19(0.04)</td>
<td>1.23(0.09)</td>
<td>1.82(0.26)</td>
<td>5.21(1.23)</td>
<td>4.88(0.23)</td>
<td>4.88(0.23)</td>
<td>4.88(0.23)</td>
<td>4.88(0.23)</td>
<td>4.88(0.23)</td>
</tr>
<tr>
<td>アドニット</td>
<td>1.33(0.12)</td>
<td>1.57(0.12)</td>
<td>1.07(0.03)</td>
<td>2.93(0.32)</td>
<td>2.93(0.32)</td>
<td>2.93(0.32)</td>
<td>2.93(0.32)</td>
<td>2.93(0.32)</td>
<td>2.93(0.32)</td>
</tr>
<tr>
<td>マンニット</td>
<td>1.61(0.21)</td>
<td>1.19(0.02)</td>
<td>2.41(0.38)</td>
<td>7.24(1.19)</td>
<td>7.24(1.19)</td>
<td>7.24(1.19)</td>
<td>7.24(1.19)</td>
<td>7.24(1.19)</td>
<td>7.24(1.19)</td>
</tr>
<tr>
<td>サルチット</td>
<td>1.33(0.12)</td>
<td>1.57(0.12)</td>
<td>1.52(0.18)</td>
<td>1.52(0.18)</td>
<td>1.52(0.18)</td>
<td>1.52(0.18)</td>
<td>1.52(0.18)</td>
<td>1.52(0.18)</td>
<td>1.52(0.18)</td>
</tr>
<tr>
<td>サルピット</td>
<td>1.10(0.04)</td>
<td>1.23(0.09)</td>
<td>1.34(0.13)</td>
<td>1.34(0.13)</td>
<td>1.34(0.13)</td>
<td>1.34(0.13)</td>
<td>1.34(0.13)</td>
<td>1.34(0.13)</td>
<td>1.34(0.13)</td>
</tr>
</tbody>
</table>

第3表 「バ」酸根、及び「バ」酸加塩培地に於ける菌の育育状況

<table>
<thead>
<tr>
<th>培地</th>
<th>20γ「バ」</th>
<th>1γ「バ」</th>
<th>5000γ糖</th>
<th>1万γ糖</th>
<th>20γ5000γ「バ」+糖</th>
<th>1γ5000γ「バ」+糖</th>
<th>20γ1万γ「バ」+糖</th>
<th>1γ1万γ「バ」+糖</th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td>グリセリン</td>
<td>673</td>
<td>687</td>
<td>1056</td>
<td>1056</td>
<td>1056</td>
<td>1056</td>
<td>1056</td>
<td>1056</td>
<td>673</td>
</tr>
<tr>
<td>エリトロトット</td>
<td>1.10(0.04)</td>
<td>1.12(0.05)</td>
<td>1.73(0.24)</td>
<td>1.73(0.24)</td>
<td>1.73(0.24)</td>
<td>1.73(0.24)</td>
<td>1.73(0.24)</td>
<td>1.73(0.24)</td>
<td>1.73(0.24)</td>
</tr>
<tr>
<td>アドニット</td>
<td>1.32(0.12)</td>
<td>1.42(0.01)</td>
<td>0.98(0.03)</td>
<td>0.98(0.03)</td>
<td>0.98(0.03)</td>
<td>0.98(0.03)</td>
<td>0.98(0.03)</td>
<td>0.98(0.03)</td>
<td>1.0(0.0)</td>
</tr>
<tr>
<td>マンニット</td>
<td>1.50(0.14)</td>
<td>1.42(0.01)</td>
<td>1.38(0.05)</td>
<td>1.38(0.05)</td>
<td>1.38(0.05)</td>
<td>1.38(0.05)</td>
<td>1.38(0.05)</td>
<td>1.38(0.05)</td>
<td>1.38(0.05)</td>
</tr>
<tr>
<td>サルチット</td>
<td>1.32(0.12)</td>
<td>1.10(0.04)</td>
<td>1.52(0.18)</td>
<td>1.52(0.18)</td>
<td>1.52(0.18)</td>
<td>1.52(0.18)</td>
<td>1.52(0.18)</td>
<td>1.52(0.18)</td>
<td>1.52(0.18)</td>
</tr>
<tr>
<td>サルピット</td>
<td>1.10(0.04)</td>
<td>1.12(0.05)</td>
<td>1.67(0.22)</td>
<td>1.67(0.22)</td>
<td>1.67(0.22)</td>
<td>1.67(0.22)</td>
<td>1.67(0.22)</td>
<td>1.67(0.22)</td>
<td>1.67(0.22)</td>
</tr>
</tbody>
</table>

第4表 「バ」酸根、及び「バ」酸加塩培地に於ける菌の育育状況

<table>
<thead>
<tr>
<th>培地</th>
<th>20γ「バ」</th>
<th>1γ「バ」</th>
<th>5000γ糖</th>
<th>1万γ糖</th>
<th>20γ5000γ「バ」+糖</th>
<th>1γ5000γ「バ」+糖</th>
<th>20γ1万γ「バ」+糖</th>
<th>1γ1万γ「バ」+糖</th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td>グリセリン</td>
<td>107</td>
<td>118</td>
<td>87</td>
<td>87</td>
<td>87</td>
<td>87</td>
<td>87</td>
<td>87</td>
<td>107</td>
</tr>
<tr>
<td>エリトロトット</td>
<td>0.89(-0.05)</td>
<td>0.98(-0.01)</td>
<td>0.73(-0.14)</td>
<td>0.73(-0.14)</td>
<td>0.73(-0.14)</td>
<td>0.73(-0.14)</td>
<td>0.73(-0.14)</td>
<td>0.73(-0.14)</td>
<td>0.73(-0.14)</td>
</tr>
<tr>
<td>アドニット</td>
<td>1.11(0.05)</td>
<td>1.30(0.11)</td>
<td>1.63(0.21)</td>
<td>1.63(0.21)</td>
<td>1.63(0.21)</td>
<td>1.63(0.21)</td>
<td>1.63(0.21)</td>
<td>1.63(0.21)</td>
<td>1.63(0.21)</td>
</tr>
<tr>
<td>マンニット</td>
<td>107</td>
<td>118</td>
<td>57</td>
<td>57</td>
<td>57</td>
<td>57</td>
<td>57</td>
<td>57</td>
<td>107</td>
</tr>
<tr>
<td>サルチット</td>
<td>1.11(0.05)</td>
<td>1.30(0.11)</td>
<td>1.73(0.23)</td>
<td>1.73(0.23)</td>
<td>1.73(0.23)</td>
<td>1.73(0.23)</td>
<td>1.73(0.23)</td>
<td>1.73(0.23)</td>
<td>1.73(0.23)</td>
</tr>
<tr>
<td>サルピット</td>
<td>0.89(-0.05)</td>
<td>0.98(-0.01)</td>
<td>0.68(-0.17)</td>
<td>0.68(-0.17)</td>
<td>0.68(-0.17)</td>
<td>0.68(-0.17)</td>
<td>0.68(-0.17)</td>
<td>0.68(-0.17)</td>
<td>0.68(-0.17)</td>
</tr>
</tbody>
</table>

「バ」酸の共存時も除かれない。「エ」は単獨では軽い促進作用を示すが、「バ」酸との共存では殆ど影響なく、「ア」は単獨では強い抑制作用を示し共存時にやや緩和されるが抑制は除かれない。「ズ」は共存では各単獨時に比較良好で著明な促進を示す。「ソ」は単獨時共存時共に軽く抑制される。（第4表参照）

5. 中村菌：「グ」は単獨で軽く抑制するが「バ」酸との共存では之が除かれて影響無く、「エ」も抑制が強く共存では緩和される。「マ」は共存で強く抑制作用を示す。「バ」は各単獨時の中間にあり殆ど影響無く、「ズ」は共存で良好な促進作用を示し特に20γ「バ」酸との共存時には著しい。 「ソ」は単獨では軽く抑制するが200γ「バ」酸との共存時共に軽く抑制される。
表5「パ」酸、糖、及び「パ」酸加糖培地における菌の発育状況

<table>
<thead>
<tr>
<th>培地</th>
<th>中村菌</th>
<th>鳥菌</th>
<th>塩化物</th>
<th>糖</th>
<th>芽胞</th>
<th>培地</th>
<th>中村菌</th>
<th>鳥菌</th>
<th>塩化物</th>
<th>糖</th>
<th>芽胞</th>
</tr>
</thead>
<tbody>
<tr>
<td>20%「パ」</td>
<td>17%「パ」</td>
<td>5000γ糖</td>
<td>1万γ糖</td>
<td>20%「パ」</td>
<td>1万γ糖</td>
<td>20%「パ」</td>
<td>1万γ糖</td>
<td>20%「パ」</td>
<td>1万γ糖</td>
<td>20%「パ」</td>
<td>1万γ糖</td>
</tr>
<tr>
<td>グリセリン</td>
<td>209</td>
<td>191</td>
<td>117</td>
<td>0.67</td>
<td>10.0</td>
<td>19</td>
<td>216</td>
<td>1.0</td>
<td>0.67</td>
<td>10.0</td>
<td>19</td>
</tr>
<tr>
<td>エリトリト</td>
<td>233</td>
<td>191</td>
<td>123</td>
<td>0.76</td>
<td>0.02</td>
<td>10.0</td>
<td>19</td>
<td>216</td>
<td>1.0</td>
<td>0.67</td>
<td>10.0</td>
</tr>
<tr>
<td>アドミット</td>
<td>198</td>
<td>167</td>
<td>123</td>
<td>0.76</td>
<td>0.02</td>
<td>10.0</td>
<td>19</td>
<td>216</td>
<td>1.0</td>
<td>0.67</td>
<td>10.0</td>
</tr>
<tr>
<td>ソルビット</td>
<td>200</td>
<td>167</td>
<td>123</td>
<td>0.76</td>
<td>0.02</td>
<td>10.0</td>
<td>19</td>
<td>216</td>
<td>1.0</td>
<td>0.67</td>
<td>10.0</td>
</tr>
</tbody>
</table>

表6「パ」酸、糖、及び「パ」酸加糖培地における菌の発育状況

<table>
<thead>
<tr>
<th>培地</th>
<th>大原菌</th>
<th>鳥菌</th>
<th>塩化物</th>
<th>糖</th>
<th>芽胞</th>
<th>培地</th>
<th>大原菌</th>
<th>鳥菌</th>
<th>塩化物</th>
<th>糖</th>
<th>芽胞</th>
</tr>
</thead>
<tbody>
<tr>
<td>20%「パ」</td>
<td>17%「パ」</td>
<td>5000γ糖</td>
<td>1万γ糖</td>
<td>20%「パ」</td>
<td>1万γ糖</td>
<td>20%「パ」</td>
<td>1万γ糖</td>
<td>20%「パ」</td>
<td>1万γ糖</td>
<td>20%「パ」</td>
<td>1万γ糖</td>
</tr>
<tr>
<td>グリセリン</td>
<td>162</td>
<td>149</td>
<td>211</td>
<td>0.43</td>
<td>0.02</td>
<td>10.0</td>
<td>19</td>
<td>216</td>
<td>1.0</td>
<td>0.67</td>
<td>10.0</td>
</tr>
<tr>
<td>エリトリト</td>
<td>162</td>
<td>149</td>
<td>211</td>
<td>0.43</td>
<td>0.02</td>
<td>10.0</td>
<td>19</td>
<td>216</td>
<td>1.0</td>
<td>0.67</td>
<td>10.0</td>
</tr>
<tr>
<td>アドミット</td>
<td>162</td>
<td>149</td>
<td>211</td>
<td>0.43</td>
<td>0.02</td>
<td>10.0</td>
<td>19</td>
<td>216</td>
<td>1.0</td>
<td>0.67</td>
<td>10.0</td>
</tr>
<tr>
<td>ソルビット</td>
<td>162</td>
<td>149</td>
<td>211</td>
<td>0.43</td>
<td>0.02</td>
<td>10.0</td>
<td>19</td>
<td>216</td>
<td>1.0</td>
<td>0.67</td>
<td>10.0</td>
</tr>
</tbody>
</table>

表7「パ」酸、糖、及び「パ」酸加糖培地における菌の発育状況

<table>
<thead>
<tr>
<th>培地</th>
<th>コレラ菌</th>
<th>ワン菌</th>
<th>塩化物</th>
<th>糖</th>
<th>芽胞</th>
<th>培地</th>
<th>コレラ菌</th>
<th>ワン菌</th>
<th>塩化物</th>
<th>糖</th>
<th>芽胞</th>
</tr>
</thead>
<tbody>
<tr>
<td>20%「パ」</td>
<td>17%「パ」</td>
<td>5000γ糖</td>
<td>1万γ糖</td>
<td>20%「パ」</td>
<td>1万γ糖</td>
<td>20%「パ」</td>
<td>1万γ糖</td>
<td>20%「パ」</td>
<td>1万γ糖</td>
<td>20%「パ」</td>
<td>1万γ糖</td>
</tr>
<tr>
<td>グリセリン</td>
<td>632</td>
<td>542</td>
<td>142</td>
<td>0.29</td>
<td>0.04</td>
<td>168</td>
<td>0.35</td>
<td>0.46</td>
<td>484</td>
<td></td>
<td></td>
</tr>
<tr>
<td>エリトリト</td>
<td>632</td>
<td>542</td>
<td>142</td>
<td>0.29</td>
<td>0.04</td>
<td>168</td>
<td>0.35</td>
<td>0.46</td>
<td>484</td>
<td></td>
<td></td>
</tr>
<tr>
<td>アドミット</td>
<td>632</td>
<td>542</td>
<td>142</td>
<td>0.29</td>
<td>0.04</td>
<td>168</td>
<td>0.35</td>
<td>0.46</td>
<td>484</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ソルビット</td>
<td>632</td>
<td>542</td>
<td>142</td>
<td>0.29</td>
<td>0.04</td>
<td>168</td>
<td>0.35</td>
<td>0.46</td>
<td>484</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

7. コレラ菌：「グル」は共存時に著しい抑制作用を示すが単独時の抑制作用はやや小さい。「ワ」は鳥菌では影響無く「パ」酸との共存で著明に促進する。「ア」の単独時に見られる強い抑制作用は共存に
於ては更に強くなり、「マ」は単離「イ・ハ」酸共存時酸に促進するが200γ「パ」酸との共存時は影響ない。『ズ」は単離でも促進し共存では著明である。「ソ」の単離時の強い抑制作用は共存時には著明である（第7表参照）。

8. 大腸菌：『グ』は単離時共存時共に著明な促進作用を示し、「エ」は単離では影響しないが200γ「パ」酸との共存では著明に促進し、「ア」は単離及び1γ「パ」酸との共存では影響しないが200γ「パ」酸と共存すれば抑制する。「マ」は単離では強く抑制するが「パ」酸と共存すれば著明に促進する。「ズ」は単離でも促進性を示すが共存すれば更に著明になる。「ソ」も同様に共存により促進性が良好となる（第8表参照）。

第8表 「パ」酸、糖、及び「パ」酸加糖培地における菌の発育状況

<table>
<thead>
<tr>
<th>培地</th>
<th>200γ「パ」</th>
<th>1γ「パ」</th>
<th>5000γ糖</th>
<th>1万γ糖</th>
<th>200γ・5000γ「パ」+糖</th>
<th>1万γ「パ」+糖</th>
<th>200γ・1万γ「パ」+糖</th>
<th>1万γ「パ」+糖</th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td>グリセリン</td>
<td>148</td>
<td>198</td>
<td>315</td>
<td>207(0.32)</td>
<td>310</td>
<td>204(0.31)</td>
<td>214(0.33)</td>
<td>152</td>
<td></td>
</tr>
<tr>
<td>エリトロット</td>
<td>172</td>
<td>234</td>
<td>188</td>
<td>22(1.44)</td>
<td>197</td>
<td>1.44(0.16)</td>
<td>1.29(0.11)</td>
<td>1.00(0.00)</td>
<td></td>
</tr>
<tr>
<td>アドニット</td>
<td>148</td>
<td>198</td>
<td>315</td>
<td>207(0.32)</td>
<td>310</td>
<td>204(0.31)</td>
<td>214(0.33)</td>
<td>152</td>
<td></td>
</tr>
<tr>
<td>マンニット</td>
<td>172</td>
<td>234</td>
<td>188</td>
<td>22(1.44)</td>
<td>197</td>
<td>1.44(0.16)</td>
<td>1.29(0.11)</td>
<td>1.00(0.00)</td>
<td></td>
</tr>
<tr>
<td>ゼルビット</td>
<td>148</td>
<td>198</td>
<td>315</td>
<td>207(0.32)</td>
<td>310</td>
<td>204(0.31)</td>
<td>214(0.33)</td>
<td>152</td>
<td></td>
</tr>
<tr>
<td>ソルビット</td>
<td>148</td>
<td>198</td>
<td>315</td>
<td>207(0.32)</td>
<td>310</td>
<td>204(0.31)</td>
<td>214(0.33)</td>
<td>152</td>
<td></td>
</tr>
</tbody>
</table>

9. 葡萄球菌：「グ」は単離でも抑制するが共存により抑制度が著る。『エ』単離では中等度の促進を示すが共存では無影響となり、「ア」は単離時のように強い抑制は共存によって除かれる殆ど影響なく「パ」酸と共存すれば抑制に軽い抑制作用を示す。「ソ」は単離共存ともに軽い抑制作用を示す。第9表参照）。

第9表 「パ」酸、糖、及び「パ」酸加糖培地における菌の発育状況

<table>
<thead>
<tr>
<th>培地</th>
<th>200γ「パ」</th>
<th>1γ「パ」</th>
<th>5000γ糖</th>
<th>1万γ糖</th>
<th>200γ・5000γ「パ」+糖</th>
<th>1万γ「パ」+糖</th>
<th>200γ・1万γ「パ」+糖</th>
<th>1万γ「パ」+糖</th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td>グリセリン</td>
<td>167</td>
<td>143</td>
<td>160</td>
<td>70(0.14)</td>
<td>90</td>
<td>0.4(0.04)</td>
<td>115</td>
<td>0.52(0.28)</td>
<td>223</td>
</tr>
<tr>
<td>アドニット</td>
<td>167</td>
<td>143</td>
<td>160</td>
<td>70(0.14)</td>
<td>90</td>
<td>0.4(0.04)</td>
<td>115</td>
<td>0.52(0.28)</td>
<td>223</td>
</tr>
<tr>
<td>ゼルビット</td>
<td>167</td>
<td>143</td>
<td>160</td>
<td>70(0.14)</td>
<td>90</td>
<td>0.4(0.04)</td>
<td>115</td>
<td>0.52(0.28)</td>
<td>223</td>
</tr>
</tbody>
</table>

* 各表の上段は集落数（実数）、下段は増増率、括弧内はその割数を示す。

9表参照）

結論

上述の知く「パ」酸加各種高級「アルコール」培地に於ける各種菌の発育状況は、糖の種類により「パ」酸の濃度により一様である。これを前提の如く、a（二者の共存により著明な促進作用を示すもの）、b（抑制的促進作用を示すもの）、c（明かなる影響の認められないもの）、d（抑制的共存するものの）の4群に分けて示す次の如くなる。

1. グリセリン：a群、大腸菌、大腸菌、群、「パラチーフス」A菌、e群、「チフス」菌、「パラチーフス」菌、「パラチーフス」B菌、中村菌、d群、「コレラ」菌、小島菌、葡萄球菌、

2. エリトロット：a群、「コレラ」菌、d群、大腸菌、大腸菌、c群、「チフス」菌、「パラチーフス」A菌、「パラチーフス」B菌、中村菌、e群、「コレラ」菌、「コレラ」菌、中村菌、f群、「コレラ」菌、志賀菌、葡萄球菌、

3. アドニット：b群、1γ「パ」酸と共存の葡萄球菌、e群、「チフス」菌、「パラチーフス」A菌、「パラチーフス」B菌、大腸菌、200γ「パ」酸と共存の葡萄球菌、1γ「パ」酸と共存の大腸菌、d群、中村菌、コレラ菌、志賀菌、200γ「パ」酸と共存の大腸菌、
4. マンニョット：a群、チフス、バラチフス、B菌、大原菌、大腸菌、b群、20gパ酸と共存の中村菌、1gパ酸と共存のコレラ菌、c群、バラチフス、B菌、1gパ酸と共存の中村菌20gパ酸と共存のコレラ菌。

5. ズルツット：a群、バラチフス、B菌、大原菌、大腸菌、20gパ酸と共存の中村菌及びコレラ菌、1gパ酸と共存の志賊菌、b群、チフス、バラチフス、A菌、1gパ酸と共存の中村菌及びコレラ菌、20gパ酸と共存の志賊菌。

6. ソルピット：a群、20gパ酸と共存のチフス菌、1gパ酸と共存のバラチフスA菌、b群、バラチフス、B菌、大原菌、大腸菌、1gパ酸と共存のチフス菌、20gパ酸と共存のバラチフスA菌、c群、バラチフス、B菌、d群、コレラ菌、志賊菌、葡萄球菌、1gパ酸と共存の中村菌。

糖酵解で無影響と見られるものにチフス菌に對する「グ」、「エ」、「ア」、「ズ」、「バラチフス」菌に対する「マ」、「フ」、「バラチフス」菌に対する「ア」、「マ」、「ズ」、大原菌に対する「ア」、「フ」、コレラ菌に対する「エ」、大腸菌に対する「フ」、あるが、これはパ酸と共存すれば促進性を示すものにチフス菌に対する「ズ」、中村菌に対する「ズ」、20gパ酸と共存の「マ」大原菌に対する「フ」、コレラ菌に対する「マ」、大腸菌に対する「エ」等がある。

又パ酸の添加により抑制されるものをチフス菌、「バラチフス」A菌、「バラチフス」B菌、大原菌に対する1gパ酸と共存の「ア」、中村菌に対する「ア」大腸菌に対する20gパ酸と共存の「ア」等がある。

糖酵解で促進性を示すパ酸の添加によって一層促進作用の著しくなるものをあげればチフス菌に対する20gパ酸と共存の「ツ」、「バラチフス」A菌に対する「ツ」、「フ」、「バラチフス」A菌に対する「ツ」、「フ」、「パ酸と共存の「マ」、志賊菌、中村菌に対する「ツ」、大原菌に対する「ツ」、「マ」、「ズ」、「コレラ」菌に対する「ツ」、「フ」、「ツ」、「ガ」、大腸菌に対する「ツ」、「マ」と共存の「マ」、大腸菌に対する「ツ」、「マ」、「ズ」、「マ」、「ガ」、大腸菌に対する「ツ」、「マ」、「ズ」、「ガ」等がある。

糖酵解で阻止的に作用するに「バラチフス」菌に対する「エ」、志賊菌に対する「フ」、「ア」、「ソ」、中村菌に対する「フ」、「エ」、「ソ」、「コレラ」菌に対する「フ」、「ア」、「ソ」、等があるがこれに「パ酸を添加して促進性を示すものを作れば大腸菌に対する「マ」、葡萄球菌に対する1gパ酸と共存の「マ」又かって「パ酸による抑制の強められるものを求めれば志賊菌に対する1gパ酸と共存時の「マ」、「ソ」、コレラ菌に対する「マ」、葡萄球菌に対する「マ」等がある。その他の全て「パ酸と共存より抑制が除かれるか緩和される。」

以上を要約すれば次の如く言う。上記の使用の諸菌は3、4、5群の高級アルコールの「パ酸と共存下では発育上に影響を受けることが少ない。人「パパ酸の添加によってその発育上に好影響を加えるものに「グリセリン」全菌系が大原菌があり、各「エピトリア」等では「コレラ菌」については大原菌があり、「エピトリア」では「コレラ菌」である。「グリセリン」に於ける志賊菌、葡萄球菌、「アドニト」に於ける「コレラ菌等は抑制作用を受けるが他は殆ど影響を受けない。6群の高級アルコールは「フ酸の添加によって上記の菌の大部分に著しい促進作用を示し「ソルピット」のみが「フ酸の添加によって志賊菌、葡萄球菌等を抑制する。」殊に「マンニョット」に於ける大原菌、「バラチフス」A菌、「ズルツット」に於ける「コレラ菌、バラチフス」A菌、「バラチフス」B菌、中村菌、大原菌、志賊菌、大腸菌、「ソルピット」に於けるチフス菌、「バラチフス」A菌等の促進作用は著明である。

本研究は文部省科学研究所に依った。発して感謝の意を表する。