Ineffability of $\mathcal{P}_{\kappa}\lambda$ for λ with small cofinality

By Toshimichi Usuba

(Received Jul. 20, 2007)
(Revised Oct. 23, 2007)

Abstract. We study ineffability, the Shelah property, and indescribability of $\mathcal{P}_{\kappa}\lambda$ when $\text{cf}(\lambda) < \kappa$. We prove that if λ is a strong limit cardinal with $\text{cf}(\lambda) < \kappa$ then the ineffable ideal, the Shelah ideal, and the completely ineffable ideal over $\mathcal{P}_{\kappa}\lambda$ are the same, and that it can be precipitous. Furthermore we show that Π^1_1-indescribability of $\mathcal{P}_{\kappa}\lambda$ is much stronger than ineffability if $2^\lambda = \lambda^{<\kappa}$.

1. Introduction.

Combinatorial principles for a cardinal, ineffability, and weak compactness were studied thoroughly in Baumgartner [4]. First we review some definitions:

Definition 1.1. For a regular uncountable cardinal κ,

1. κ is weakly compact if, for all $\langle a_\alpha : \alpha < \kappa \rangle$ with $a_\alpha \subseteq \alpha$, there exists $A \subseteq \kappa$ such that $\{ \alpha < \kappa : A \cap \alpha = a_\alpha \cap \beta \}$ is unbounded in κ for all $\beta < \kappa$,

2. κ is ineffable (respectively almost ineffable) if, for all $\langle a_\alpha : \alpha < \kappa \rangle$ with $a_\alpha \subseteq \alpha$, there exists $A \subseteq \kappa$ such that $\{ \alpha < \kappa : A \cap \alpha = a_\alpha \}$ is stationary in κ (respectively unbounded in κ).

The definition of ineffability and almost ineffability is due to Jensen and Kunen. Weak compactness originated from the study of compactness of infinitary logic (see section 4 in Kanamori [18]). The above combinatorial definition (1) was found by Baumgartner [4]. Afterward ineffability was translated into $\mathcal{P}_{\kappa}\lambda$-structures by Jech [13], where κ is a regular uncountable cardinal, $\lambda \geq \kappa$ is a cardinal, and $\mathcal{P}_{\kappa}\lambda = \{ x \subseteq \lambda : |x| < \kappa \}$. Carr [8] defined the Shelah property, mild ineffability, and indescribability of $\mathcal{P}_{\kappa}\lambda$ as a generalization of weak compactness of a cardinal. These properties of $\mathcal{P}_{\kappa}\lambda$ have been widely studied when $\text{cf}(\lambda) \geq \kappa$, and it has been shown that ineffability, almost ineffability, and the Shelah property form a proper hierarchy. For instance, if κ is almost κ^+-ineffable then there are stationary many $\alpha < \kappa$ such that α is α^+-Shelah.

2000 Mathematics Subject Classification. Primary 03E55; Secondary 03E05.

Key Words and Phrases. $\mathcal{P}_{\kappa}\lambda$, ineffable, almost ineffable, the Shelah property, indescribable.
On the other hand, Abe [3] showed that ineffability of $\mathcal{P}_\kappa \lambda$ coincides with almost ineffability if $2^\lambda = \lambda^{< \kappa}$. Hence the above mentioned hierarchy can be collapsed if $\text{cf}(\lambda) < \kappa$. We will investigate ineffability, the Shelah property, and indescribability of $\mathcal{P}_\kappa \lambda$ when $\text{cf}(\lambda) < \kappa$.

We know $\lambda^{< \kappa}$ is the size of $\mathcal{P}_\kappa \lambda$. We also try to decide the size of $\mathcal{P}_\kappa \lambda$ under weaker assumptions than before. Solovay [20] proved $\lambda^{< \kappa} = \lambda^+$ if κ is λ-(super)compact and $\text{cf}(\lambda) < \kappa$, where λ^+ denotes the minimal cardinal greater than λ, and Johnson [15] showed that $\lambda^{< \kappa} = \lambda$ holds if κ is λ-Shelah and $\text{cf}(\lambda) \geq \kappa$. We extend this to the following:

Theorem 1.2.

1. If κ is mildly λ-ineffable and $\text{cf}(\lambda) \geq \kappa$, then $\lambda^{< \kappa} = \lambda$, and
2. if κ is λ-Shelah and $\text{cf}(\lambda) < \kappa$ then $\lambda^{< \kappa} = \lambda^+$.

The following theorem can be seen as an extension of a theorem of Abe in [3]. This shows that ineffability, the Shelah property, and complete ineffability of $\mathcal{P}_\kappa \lambda$ can be the same when $\text{cf}(\lambda) < \kappa$, and the corresponding ideals can be precipitous. This contrasts with the fact that the completely ineffable ideal is not precipitous if $\text{cf}(\lambda) \geq \kappa$.

Theorem 1.3. Assume λ is a strong limit cardinal with $\text{cf}(\lambda) < \kappa$. Then

1. $\text{NSh}_{\kappa \lambda} = \text{NAIn}_{\kappa \lambda} = \text{NIn}_{\kappa \lambda} = \text{NCIn}_{\kappa \lambda}$, and
2. if κ is λ-ineffable and $\mu > \lambda$ is a Woodin cardinal, then, in $V^{\text{Col}(\lambda^+, < \mu)}$, κ remains λ-ineffable and $\text{NSh}_{\kappa \lambda} = \text{NAIn}_{\kappa \lambda} = \text{NIn}_{\kappa \lambda} = \text{NCIn}_{\kappa \lambda}$ is precipitous.

$\text{NSh}_{\kappa \lambda}, \text{NAIn}_{\kappa \lambda}, \text{NIn}_{\kappa \lambda}$, and $\text{NCIn}_{\kappa \lambda}$ are ideals corresponding to the Shelah property, almost ineffability, ineffability, and complete ineffability respectively. To prove Theorem 1.2, we give a simple characterization of $\text{NIn}_{\kappa \lambda}$. Using this, we have the consistency of the statement that $\text{cf}(\lambda) < \kappa$ and κ is completely λ-ineffable but not mildly $\lambda^{< \kappa}$-ineffable.

Baumgartner defined indescribability of $\mathcal{P}_\kappa \lambda$ and Carr [8] showed that Π_1^1-indescribability is equivalent to the Shelah property if $\text{cf}(\lambda) \geq \kappa$. The next theorem shows that, if $\text{cf}(\lambda) < \kappa$, this equivalence can be false. Moreover Π_1^1-indescribability can be much stronger than ineffability.

Theorem 1.4. Assume $2^\lambda = \lambda^{< \kappa}$. Then $\text{NIn}_{\kappa \lambda} \subseteq \Pi_{\kappa \lambda}$ holds, and if κ is λ-ineffable then $\text{NIn}_{\kappa \lambda} \not\subseteq \Pi_{\kappa \lambda}$.

$\Pi_{\kappa \lambda}$ is the ideal corresponding to Π_1^1-indescribability.

Part (2) of Theorem 1.2 and Theorem 1.4 are answers to questions of Abe in [2].
2. Preliminaries.

We refer the reader to Kanamori [18] for general background and basic notation. Throughout this paper, \(\kappa \) denotes an inaccessible cardinal and \(\lambda \) denotes a cardinal equal to or greater than \(\kappa \). In fact, the properties mentioned in this paper imply the inaccessibility of \(\kappa \).

Recall that \(\P_{\kappa \lambda} = \{x \subseteq \lambda : |x| < \kappa\} \).

In this paper, an ideal (respectively a filter) over \(\P_{\kappa \lambda} \) means a \(\kappa \)-complete fine ideal (respectively filter) over \(\P_{\kappa \lambda} \). That is, \(I \subseteq \P(\P_{\kappa \lambda}) \) is called an ideal over \(\P_{\kappa \lambda} \) if the following hold:

1. \(\forall X \in I \forall Y \subseteq X (Y \in I) \),
2. \(\forall \gamma < \kappa \forall \{X_\xi : \xi < \gamma\} \subseteq I (\bigcup_{\xi < \gamma} X_\xi \in I) \),
3. \(\forall a \in \P_{\kappa \lambda} (\{x \in \P_{\kappa \lambda} : a \nsubseteq x\} \in I) \).

For an ideal \(I \) over \(\P_{\kappa \lambda} \), \(I^* \) denotes the dual filter of \(I \), and \(I^+ = \P(\P_{\kappa \lambda}) \setminus I \). An element of \(I^+ \) is called an \(I \)-positive set. For \(X \in I^+ \), let \(I|X = \{Y \subseteq \P_{\kappa \lambda} : Y \cap X \in I\} \). \(I|X \) is the restriction of \(I \) to \(X \).

An ideal \(I \) over \(\P_{\kappa \lambda} \) is called normal if for every \(X \in I^+ \) and function \(f : X \to \P_{\kappa \lambda} \) with \(\forall x \in X (f(x) \in x) \), there exists \(\alpha < \lambda \) such that \(\{x \in X : f(x) = \alpha\} \in I^+ \). In a trivial sense, the non-proper ideal is normal.

For a set \(X \subseteq \P_{\kappa \lambda} \), \(X \) is unbounded if \(\forall x \in \P_{\kappa \lambda} \exists y \in X (x \subseteq y) \). \(X \) is closed if for every \(\gamma < \kappa \) and \(\subseteq \)-increasing sequence \(\langle x_\xi : \xi < \gamma\rangle \) in \(X \), \(\bigcup_{\xi < \gamma} x_\xi \in X \). A closed and unbounded set is called club. A set \(S \subseteq \P_{\kappa \lambda} \) is stationary if \(S \) intersects any club set.

The following fact is well-known:

Fact 2.1. For \(X \subseteq \P_{\kappa \lambda} \), the following are equivalent:

1. \(X \) is stationary in \(\P_{\kappa \lambda} \),
2. for every \(f : \lambda \times \lambda \to \lambda \), there exists \(x \in X \) such that \(x \cap \kappa \in \kappa \) and \(f^{\omega}(x \times x) \subseteq x \), and
3. for every \(f : \lambda \times \lambda \to \P_{\kappa \lambda} \), there exists \(x \in X \) such that \(\bigcup f^{\omega}(x \times x) \subseteq x \).

The non-stationary ideal over \(\P_{\kappa \lambda} \), \(\NS_{\kappa \lambda} \), is the set of all \(X \subseteq \P_{\kappa \lambda} \) such that \(X \) is non-stationary in \(\P_{\kappa \lambda} \).

Fact 2.2. \(\NS_{\kappa \lambda} \) is the minimal normal ideal over \(\P_{\kappa \lambda} \).

Definition 2.3. For \(x, y \in \P_{\kappa \lambda} \), we define \(x < y \) if \(x \subseteq y \) and \(|x| < |y \cap \kappa| \).

For \(X \subseteq \P_{\kappa \lambda} \), a function \(f : X \to \P_{\kappa \lambda} \) is said to be \(< \)-regressive if \(f(x) < x \) for every \(x \in X \) with \(x \cap \kappa \neq \emptyset \).

An ideal \(I \) over \(\P_{\kappa \lambda} \) is strongly normal if the following condition is satisfied:
For every $X \in I^+$ and \prec-regressive function $f : X \to \mathcal{P}_\kappa \lambda$, there exists $y \in \mathcal{P}_\kappa \lambda$ such that \{ $x \in X : f(x) = y$ \} $\in I^+$.

The non-proper ideal is trivially strongly normal.
For $x \in \mathcal{P}_\kappa \lambda$, we denote the set \{ $y \in \mathcal{P}_\kappa \lambda : y < x$ \} by $\mathcal{P}_{\kappa \cap x}$. If $x \cap \kappa$ is a regular cardinal, then properties of $\mathcal{P}_\kappa \lambda$ correspond to the properties of $\mathcal{P}_{\kappa \cap x}$. For example, $X \subseteq \mathcal{P}_{\kappa \cap x}$ is stationary if for all $f : x \times x \to \mathcal{P}_{\kappa \cap x}$ there exists $y \in X$ such that $\bigcup f^\sim(y \times y) \subseteq y$.

For $f : \mathcal{P}_\kappa \lambda \to \mathcal{P}_\kappa \lambda$, we let $C_f = \{ x \in \mathcal{P}_\kappa \lambda : f^\sim \mathcal{P}_{\kappa \cap x} \subseteq \mathcal{P}_{\kappa \cap x} \}$.

Definition 2.4. WNS$_{\kappa \lambda}$ = \{ $X \subseteq \mathcal{P}_\kappa \lambda : \exists f : \mathcal{P}_\kappa \lambda \to \mathcal{P}_\kappa \lambda (C_f \cap X = \emptyset)$ \}.

Fact 2.6 (Abe [1]).
\begin{enumerate}
 \item \{ $x \in \mathcal{P}_\kappa \lambda : e(x) \cap \lambda = x$ \} \in WNS$_{\kappa \lambda}$.
 \item \{ $x \in \mathcal{P}_\kappa \lambda^{<\kappa} : e(x) \cap \lambda = x$ \} \in WNS$_{\kappa \lambda^{<\kappa}}$.
 \item For $X \subseteq \mathcal{P}_\kappa \lambda$, $X \in$ WNS$_{\kappa \lambda}$ if and only if $e^\sim X \in$ WNS$_{\kappa \lambda^{<\kappa}}$.
\end{enumerate}

Ineffability and the Shelah property of $\mathcal{P}_\kappa \lambda$ are defined in the following.

Definition 2.7 (Carr [8], [9], Jech [13]). Let X be a subset of $\mathcal{P}_\kappa \lambda$.
\begin{enumerate}
 \item X is **ineffable** (respectively *almost ineffable*) if, for all $\langle a_x : x \in X \rangle$ with $a_x \subseteq x$, there exists $A \subseteq \lambda$ such that \{ $x \in X : A \cap x = a_x$ \} is stationary (respectively unbounded).
 \item X has the **Shelah property**, or simply X is Shelah if, for all $\langle f_x : x \in X \rangle$ with $f_x : x \to \lambda$, there exists $f : \lambda \to \lambda$ such that, for all $y \in \mathcal{P}_\kappa \lambda$, the set \{ $x \in X : f^\sim y \cap = f_x^\sim y$ \} is unbounded.
 \item X is **mildly ineffable** if, for all $\langle a_x : x \in X \rangle$ with $a_x \subseteq x$, there exists $A \subseteq \lambda$ such that, for all $y \in \mathcal{P}_\kappa \lambda$, the set \{ $x \in X : A \cap y = a_x \cap y$ \} is unbounded.
\end{enumerate}
We say that κ is λ-ineffable (almost λ-ineffable, λ-Shelah, mildly λ-ineffable respectively) if $\mathcal{P}_\kappa \lambda$ is ineffable (almost ineffable, Shelah, mildly ineffable respectively).

Notice that the Shelah property implies mildly ineffability,

$\text{NIn}_{\kappa \lambda}$ (respectively $\text{NAIn}_{\kappa \lambda}$, $\text{NSh}_{\kappa \lambda}$) is the set of all $X \subseteq \mathcal{P}_\kappa \lambda$ such that X is not ineffable (respectively almost ineffable, Shelah).

FACT 2.8 (Carr [8], [9]).

1. κ is weakly compact \iff κ is κ-Shelah \iff κ is mildly κ-ineffable.
2. κ is ineffable (respectively almost ineffable) \iff κ is κ-ineffable (respectively almost κ-ineffable).
3. $\text{NSh}_{\kappa \lambda}$, $\text{NAIn}_{\kappa \lambda}$, and $\text{NIn}_{\kappa \lambda}$ are normal ideals over $\mathcal{P}_\kappa \lambda$. Moreover these are strongly normal if $\text{cf}(\lambda) \geq \kappa$.
4. If κ is mildly λ-ineffable, then, for $X \subseteq \mathcal{P}_\kappa \lambda$, X is mildly ineffable if and only if X is unbounded.

FACT 2.9 (Carr [9]). For $X \subseteq \mathcal{P}_\kappa \lambda$, X is ineffable (almost ineffable) if and only if, for all $\langle f_x : x \in X \rangle$ with $f_x : x \to x$, there exists $f : \lambda \to \lambda$ such that $\{x \in X : f|y = f_x\} \subseteq X$ is stationary (unbounded). Hence $\text{NSh}_{\kappa \lambda} \subseteq \text{NAIn}_{\kappa \lambda} \subseteq \text{NIn}_{\kappa \lambda}$ holds.

The next fact follows from the normality of $\text{NSh}_{\kappa \lambda}$ and a standard coding argument.

FACT 2.10. For $X \subseteq \mathcal{P}_\kappa \lambda$, X is Shelah if and only if, for any $\langle f_x : x \in X \rangle$ with $f_x : x \to x$ and $\langle g_x : x \in X \rangle$ with $g_x : x \to x$, there exists $f : \lambda \to \lambda$ and $g : \lambda \to \lambda$ such that $\{x \in X : f|y = f_x|y, g|y = g_x|y\}$ is unbounded for all $y \in \mathcal{P}_\kappa \lambda$.

For an infinite set X, let $[X]^\omega$ be the set of all $x \subseteq X$ such that $|x| = \omega$. $F : [X]^\omega \to X$ is called an ω-Jonsson function for X if the following holds: There is no $Y \subsetneq X$ such that $F^\omega[Y]^\omega \subseteq Y$ and $|Y| = |X|$. It is well-known that every infinite set X has an ω-Jonsson function for X (see Erdős-Hajnal [11]).

FACT 2.11 (Abe [2], Johnson [16]). Let μ be a cardinal with $\mu \leq \lambda$.

1. If $F : [\mu]^\omega \to \mu$ is an ω-Jonsson function for μ, then $\{x \in \mathcal{P}_\kappa \lambda : F^\omega[x \cap \mu]^\omega \subseteq x \cap \mu$ and $F|[x \cap \mu]^\omega$ is ω-Jonsson for $x \cap \mu \in \text{NSh}_{\kappa \lambda}^*$
2. If μ is regular, then $\{x \in \mathcal{P}_\kappa \lambda : \text{ot}(x \cap \mu)$ is regular $\} \subset \text{NSh}_{\kappa \lambda}^*$, where $\text{ot}(x)$ denotes the order type of x.

3. Basic properties of ineffabilities.

In this section, we will show some basic properties of ineffabilities of $\mathcal{P}_\kappa \lambda$.

First we prove the strong normality of $\text{NSh}_{\kappa \lambda}$, $\text{NAIn}_{\kappa \lambda}$, and $\text{NIn}_{\kappa \lambda}$ without the condition that $\text{cf}(\lambda) \geq \kappa$.

Proposition 3.1. $\text{NSh}_{\kappa \lambda}$, $\text{NAIn}_{\kappa \lambda}$, and $\text{NIn}_{\kappa \lambda}$ are strongly normal ideals.

Proof. We will only show the strong normality of $\text{NSh}_{\kappa \lambda}$. The others can be verified by a similar argument. Let $X \subseteq \text{NSh}_{\kappa \lambda}$ and let $g : X \to \mathcal{P}_{\kappa \lambda}$ be a $<\text{-regressive}$ function. By the normality of $\text{NSh}_{\kappa \lambda}$, we may assume that there exists $\mu < \kappa$ such that $\text{ot}(g(x)) = \mu$ for all $x \in X$. Furthermore we may assume $\mu \subseteq x$ for all $x \in X$. For each $x \in X$, let $h_x : \mu \to x$ be an increasing enumerating map of $g(x)$.

Let $X_a = \{x \in X : g(x) = a\}$. Suppose $X_a \in \text{NSh}_{\kappa \lambda}$ for all $a \in \mathcal{P}_{\kappa \lambda}$. For each $a \in \mathcal{P}_{\kappa \lambda}$, let $\langle f^a_x : x \in X_a \rangle$ be a counterexample to the Shelah property of X_a. Consider the sequences $\langle f^g_x : x \in X \rangle$ and $\langle h_x : x \in X \rangle$. By the Shelah property of X, there exist $f : \lambda \to \lambda$ and $h : \mu \to \lambda$ such that $\{x \in X : f|y = f^g_x|y, h|y = h_x|y\}$ is unbounded for all $y \in \mathcal{P}_{\kappa \lambda}$. Let $b = h \upharpoonright \mu \in \mathcal{P}_{\kappa \lambda}$. We will prove that $\{x \in X_b : f|y = f^g_x|y\}$ is unbounded for all $y \in \mathcal{P}_{\kappa \lambda}$, which is a contradiction. Let $y \in \mathcal{P}_{\kappa \lambda}$. We may assume that $\mu \subseteq y$. Then $\{x \in X : f|y = f^g_x|y, h|y = h_x|y\}$ is unbounded. Let $x \in X$ be such that $y \subseteq x$, $h|y = h_x|y$, and $f|y = f^g_x|y$. Since $\mu \subseteq y$, we have $h = h|y = h_x|y = h_x$, and this means that $g(x) = b$. Therefore $f|y = f^g_x|y = f^g_b|y$ holds. □

Next we show a variation of $(\text{UP})_{\kappa \lambda X}$ in Carr [8] from mild ineffability. We will use this in the next section.

Recall that a filter over $\mathcal{P}_{\kappa \lambda}$ means a κ-complete fine filter.

For a regular uncountable cardinal θ, H_θ denotes the set of all x such that $|TC(x)| < \theta$ where $TC(x)$ is the minimal transitive set containing x. It is known that H_θ is a model of ZFC–Power Set Axiom.

Proposition 3.2. Let θ be a sufficiently large regular cardinal, and let N be any expansion of $(H_\theta, \in, \kappa, \lambda)$. Let $X \subseteq \mathcal{P}_{\kappa \lambda}$ and $M < N$ be such that $X \in M$ and $|M| = \lambda \subseteq M$. Then X is mildly ineffable if and only if there exists a proper filter F over $\mathcal{P}_{\kappa \lambda}$ such that $X \in F$ and F is an M-ultrafilter. Here “F is an M-ultrafilter” means that, for all $X \in M \cap \mathcal{P}(\mathcal{P}_{\kappa \lambda})$, either $X \in F$ or $\mathcal{P}_{\kappa \lambda} \setminus X \in F$.

Proof. Assume X is mildly ineffable. We will construct an M-ultrafilter. Let $\langle X_\alpha : \alpha < \lambda \rangle$ be an enumeration of $\mathcal{P}(\mathcal{P}_{\kappa \lambda}) \cap M$. For each $x \in X$, let $a_x = \{\alpha \in x : x \in X_\alpha\}$. Then, by the mild ineffability of X, there exists $A \subseteq \lambda$ such that $\{x \in X : a_x \cap y = A \cap y\}$ is unbounded for all $y \in \mathcal{P}_{\kappa \lambda}$. Let F be the filter over $\mathcal{P}_{\kappa \lambda}$ generated by $\{X \cap \bigcap_{\alpha \in y} X_\alpha : y \in \mathcal{P}_{\kappa A}\}$, that is $Y \in F$ if and only if $X \cap \bigcap_{\alpha \in y} X_\alpha \subseteq Y$ for some $y \in \mathcal{P}_{\kappa A}$. It is clear that F is a κ-complete
filter over $\mathcal{P}_\kappa \lambda$ and $X \in F$. Notice that $X_\alpha \in F$ for all $\alpha \in A$. We check that F is a proper fine filter and an M-ultrafilter.

Finess. Let $\alpha < \lambda$. Since $\alpha \in \lambda \subseteq M$, there exists $\beta < \lambda$ such that $X_\beta = \{ x \in \mathcal{P}_\kappa \lambda : \alpha \in x \}$. Take $x \in X$ such that $\alpha, \beta \in x$ and $A \cap \{ \beta \} = a_x \cap \{ \beta \}$. Since $\alpha \in x$, we have $x \in X_\beta$, so $\beta \in a_x$ and $\beta \in A$.

Properness. It is enough to show that $X \cap \bigcap_{\alpha \in y} X_\alpha \neq \emptyset$ for all $y \in \mathcal{P}_\kappa A$. For $y \in \mathcal{P}_\kappa A$, we can pick $x \in X$ such that $y \subseteq x$ and $a_x \cap y = A \cap y = y$. Then $x \in \bigcap_{\alpha \in a_x} X_\alpha \subseteq \bigcap_{\alpha \in y} X_\alpha$, thus $X \cap \bigcap_{\alpha \in y} X_\alpha \neq \emptyset$.

Now we check that F is an M-ultrafilter. Let $Y \in \mathcal{P}(\mathcal{P}_\kappa \lambda) \cap M$. Then there are $\alpha, \beta < \lambda$ such that $X_\alpha = Y$ and $X_\beta = \mathcal{P}_\kappa \lambda \setminus Y$. Take $x \in \mathcal{P}_\kappa \lambda$ such that $\alpha, \beta \in x$ and $A \cap \{ \alpha, \beta \} = a_x \cap \{ \alpha, \beta \}$. Then either $x \in X_\alpha$ or $x \in X_\beta$ hold, hence we have $\alpha \in a_x$ or $\beta \in a_x$. Thus $\alpha \in A$ or $\beta \in A$.

To show the converse, assume that there exists a proper M-ultrafilter F. By the elementarity of M, it is enough to show that, for all $\langle a_x : x \in \mathcal{P}_\kappa \lambda \rangle \in M$ with $a_x \subseteq x$, there exists $A \subseteq \lambda$ such that $\{ x \in X : a_x \cap y = A \cap y \}$ is unbounded for all $y \in \mathcal{P}_\kappa \lambda$. Fix $\langle a_x : x \in \mathcal{P}_\kappa \lambda \rangle \in M$. Since $\lambda \subseteq M$ and F is an M-ultrafilter with $X \in F$, for each $\alpha < \lambda$, either $\{ x \in X : \alpha \in a_x \} \in F$ or $\{ x \in \mathcal{P}_\kappa \lambda : \alpha \notin a_x \} \in F$. Let $A = \{ \alpha < \lambda : \{ x \in X : \alpha \in a_x \} \in F \}$. Then it is not hard to see that $\{ x \in X : a_x \cap y = A \cap y \} \in F$, so the set is unbounded for all $y \in \mathcal{P}_\kappa \lambda$. \square

4. The Shelah property, mild ineffability, and the size of $\mathcal{P}_\kappa \lambda$.

Johnson [16] showed that $\lambda^{<\kappa} = \lambda$ holds if κ is λ-Shelah and $\text{cf}(\lambda) \geq \kappa$. We see that the same result holds for mild ineffability, and moreover $\lambda^{<\kappa} = \lambda^+$ holds if κ is λ-Shelah and $\text{cf}(\lambda) < \kappa$.

Proposition 4.1. Assume κ is mildly λ-ineffable and $\text{cf}(\lambda) \geq \kappa$. Then $\lambda^{<\kappa} = \lambda$.

Proof. Mild ineffability is downward closed, that is, if $\mathcal{P}_\kappa \lambda$ is mildly ineffable and $\kappa \leq \lambda' < \lambda$ then $\mathcal{P}_\kappa \lambda'$ is mildly ineffable. Thus it is enough to prove the case when λ is regular. We will show that there exists an unbounded subset X of $\mathcal{P}_\kappa \lambda$ such that $|X| = \lambda$. If this can be shown, then $\mathcal{P}_\kappa \lambda = \bigcup \{ \mathcal{P}(x) : x \in X \}$, which proves $\lambda^{<\kappa} \leq \lambda \cdot \kappa^{<\kappa} = \lambda$.

Let θ be a sufficiently large regular cardinal. Let $M < \langle H_\theta, \in, \kappa, \lambda \rangle$ be such that $\lambda \subseteq M$ and $|M| = \lambda$. Then, by Proposition 3.2, we can find a proper κ-complete fine M-ultrafilter F over $\mathcal{P}_\kappa \lambda$. M is not transitive, but we can take an ultrapower M by F in the usual way. Moreover it is not hard to see that Los’s theorem holds between M and $\text{Ult}(M, F)$: For any formula φ and $f_1, \ldots, f_n \in M \cap \mathcal{P}_\kappa \lambda M$, $\{ x \in \mathcal{P}_\kappa \lambda : M \vDash \varphi(f_1(x), \ldots, f_n(x)) \} \in F$ if and only if $\text{Ult}(M, F)$
\[
\varphi([f_1], \ldots, [f_n]), \text{ where } [f] \text{ is an equivalence class of } f. \text{ Since } F \text{ is } \kappa\text{-complete in } V, \text{ Ult}(M, F) \text{ is well-founded. Let } N \text{ be the transitive collapse of Ult}(M, F). \text{ Now we identify } N \text{ with Ult}(M, F). \text{ Let } j : M \to N \text{ be the corresponding elementary embedding. Since } F \text{ is fine, we have that } j^{\ast} \iota \subseteq [f_\text{id}], \text{ where } f_\text{id} \text{ is the identity map on } \mathcal{P}_\kappa \lambda. \text{ Furthermore } F \text{ is } \kappa\text{-complete and } ||f_\text{id}||^N < j(\kappa), \text{ hence the critical point of } j \text{ is } \kappa. \text{ Since } \sup(j^{\ast} \lambda) \leq \sup([f_\text{id}]) \text{ and } \{x \in \mathcal{P}_\kappa \lambda : \sup(x) < \lambda \} \in F, \text{ we have } \sup(j^{\ast} \lambda) < j(\lambda). \text{ Notice that we do not require that } j^{\ast} \lambda \subseteq N, \text{ but we have } j^{\ast} x \in N \text{ for all } x \in \mathcal{P}_\kappa \lambda \cap M.

We check that } j^{\ast} \lambda \text{ is } < \kappa\text{-closed, that is, for all } c \subseteq j^{\ast} \lambda, \sup(c) \in j^{\ast} \lambda \text{ if } \text{ot}(c) < \kappa. \text{ Let } \alpha < \lambda \text{ be the minimal ordinal such that } \sup(c) \leq j(\alpha). \text{ Then } \sup(c) = \sup(j^{\ast} \alpha). \text{ Hence } \text{cf}(\alpha) < \kappa. \text{ Take } d \in M \text{ such that } \text{ot}(d) = \text{cf}(\alpha) \text{ and } d \text{ is unbounded in } \alpha. \text{ Then } j(\alpha) = \sup(j(d)) = \sup(j^{\ast} d) = \sup(j^{\ast} \alpha) = \sup(c). \text{ Therefore we have } \sup(c) \in j^{\ast} \lambda.

Now take an arbitrary stationary subset } S \text{ of } \{\alpha < \lambda : \text{cf}(\alpha) < \kappa\} \text{ with } S \in M.

Claim 4.2. } j(S) \cap \sup(j^{\ast} \lambda) \text{ is stationary in } \sup(j^{\ast} \lambda) \text{ in } V.

Proof of the Claim 4.2. \text{ Let } C \text{ be a } < \kappa\text{-club subset of } \sup(j^{\ast} \lambda). \text{ Since } j^{\ast} \lambda \text{ is also } < \kappa\text{-closed, we may assume that } C \subseteq j^{\ast} \lambda. \text{ Let } D = j^{\ast}^{-1} C. \text{ Then } D \text{ is unbounded in } \lambda. \text{ Thus there exists } \alpha \in S \text{ such that } D \cap \alpha \text{ is unbounded in } \alpha. \text{ Since } \alpha \in M, \text{ we can take an unbounded subset } b \text{ of } \alpha \text{ such that } b \in M \text{ and } \text{ot}(b) = \text{cf}(\alpha). \text{ Then } j(\alpha) = \sup(j(b)) = \sup(j^{\ast} b) = \sup(j^{\ast} \alpha). \text{ Since } D \cap \alpha \text{ is unbounded in } \alpha, \text{ hence } j^{\ast}(D \cap \alpha) = j^{\ast} D \cap j(\alpha) \text{ is unbounded in } j(\alpha). \text{ Since } j^{\ast} D \subseteq C, \text{ we have } j(\alpha) \in C. \text{ Hence we have } j(\alpha) \in j(S) \cap C. \qed

Now fix pairwise disjoint stationary subsets } \{S_\alpha : \alpha < \lambda\} \text{ of } \{\beta < \lambda : \text{cf}(\beta) < \kappa\} \text{ with } \{S_\alpha : \alpha < \lambda\} \subseteq M. \text{ For } \beta < \lambda \text{ with } \omega < \text{cf}(\beta) < \kappa, \text{ let } c_\beta = \{\alpha < \beta : S_\alpha \cap \beta \text{ is stationary in } \beta\}. \text{ Since the } S_\alpha \text{'s are pairwise disjoint, we have } \text{cf}(\beta) \leq \text{cf}(\beta) < \kappa. \text{ Now let } X = \{c_\beta : \beta < \lambda, \omega < \text{cf}(\beta) < \kappa\}. \text{ Then } X \text{ is a subset of } \mathcal{P}_\kappa \lambda \text{ with } |X| = \lambda. \text{ Finally we show that } X \text{ is unbounded to complete the proof.}

\text{Let } f \text{ be a function on } \mathcal{P}_\kappa \lambda \text{ such that } f \in M \text{ and } [f] = \sup(j^{\ast} \lambda). \text{ Since } j^{\ast} \lambda \subseteq [f_\text{id}], [f_\text{id}] \cap [f] \text{ is unbounded in } [f]. \text{ Because } ||f_\text{id}||^N < j(\kappa), \text{ cf}^N([f]) < j(\kappa) \text{ and so } \{x \in \mathcal{P}_\kappa \lambda : \text{cf}(f(x)) < \kappa\} \subseteq F. \text{ Take an arbitrary } y \in \mathcal{P}_\kappa \lambda. \text{ Let } \alpha \in y. \text{ By Claim 4.2, } j(S_\alpha) \cap \sup(j^{\ast} \lambda) \text{ is stationary. Hence } \{x \in \mathcal{P}_\kappa \lambda : S_\alpha \cap f(x) \text{ is stationary in } f(x)\} \subseteq F. \text{ By the } \kappa\text{-completeness of } F, \text{ we have } \{x \in \mathcal{P}_\kappa \lambda : \forall \alpha \in y (S_\alpha \cap f(x) \text{ is stationary in } f(x)), c_f(x) < \kappa\} \subseteq F. \text{ Therefore we can take } x \in \mathcal{P}_\kappa \lambda \text{ such that } \omega < \text{cf}(f(x)) < \kappa \text{ and } y \subseteq c_f(x) \in X. \text{ This shows } X \text{ is unbounded.} \qed

\text{The proof of the above proposition shows that a simultaneous stationary reflection principle of } \{\alpha < \lambda : \text{cf}(\alpha) < \kappa\} \text{ follows from mild } \lambda\text{-ineffability. The}
following is an extension of Johnson’s result [15]:

Proposition 4.3. Assume \(\lambda \) is regular and \(\kappa \) is mildly \(\lambda \)-ineffable. Let \(\delta < \kappa \) and \(\langle S_\alpha : \alpha < \delta \rangle \) be stationary subsets of \(\{ \beta < \lambda : \text{cf}(\beta) < \kappa \} \). Then, for every \(\gamma < \kappa \), there exists \(\beta < \lambda \) such that \(\gamma < \text{cf}(\beta) \) and \(S_\alpha \cap \beta \) is stationary in \(\beta \) for all \(\alpha < \delta \).

Now we prove that the Shelah property of \(\mathcal{P}_\kappa \lambda \) with \(\text{cf}(\lambda) < \kappa \) implies that \(\lambda^{<\kappa} = \lambda^+ \).

Proposition 4.4. Assume \(\kappa \) is \(\lambda \)-Shelah and \(\text{cf}(\lambda) < \kappa \). Then \(\lambda^{<\kappa} = \lambda^+ \).

Proof. This proof is based on an argument of Tryba [21]. First we introduce a notion of *scale*. Fix an increasing sequence of regular cardinals \(\langle \lambda_i : i < \text{cf}(\lambda) \rangle \) which converges to \(\lambda \). We denote \(\Pi_i^{<\text{cf}(\lambda)} \lambda_i \) by \(\Pi_i \). For \(f, g \in \Pi_i \), let \(f <^* g \) if and only if \(\{ i < \text{cf}(\lambda) : f(i) \geq g(i) \} \) is bounded in \(\text{cf}(\lambda) \). We say that \(\langle f_\xi : \xi < \lambda^+ \rangle \) is a *scale* for \(\Pi_i \) if the following hold:

1. \(f_\xi \in \Pi_i \) for all \(\xi < \lambda^+ \),
2. for \(\xi < \eta < \lambda^+ \), \(f_\xi <^* f_\eta \), and
3. for all \(f \in \Pi_i \), there exists \(\xi < \lambda^+ \) such that \(f <^* f_\xi \).

It is a basic fact of Shelah’s PCF-theory that there exists a sequence of regular cardinals \(\langle \lambda_i : i < \text{cf}(\lambda) \rangle \) and a scale \(\langle f_\xi : \xi < \lambda^+ \rangle \) for \(\Pi_i \) (see Burke-Magidor [6] or Shelah [19]).

Now fix an increasing sequence of regular cardinals \(\langle \lambda_i : i < \text{cf}(\lambda) \rangle \) which converges to \(\lambda \) and a scale \(\langle f_\alpha : \alpha < \lambda^+ \rangle \) for \(\Pi_i \). For each \(\lambda_i \), fix an \(\omega \)-Jonsson function \(h_i : [\lambda_i]^{<\omega} \to \lambda_i \). Let \(e : \mathcal{P}_\kappa \lambda \to \mathcal{P}_\kappa \lambda^{<\kappa} \) be a canonical map. Let \(X \subseteq \mathcal{P}_\kappa \lambda \) be the set of all \(x \in \mathcal{P}_\kappa \lambda \) such that:

- \(x \cap \kappa \) is an inaccessible > \(\text{cf}(\lambda) \),
- \(\text{ot}(x \cap \lambda_i) \) is regular for all \(i < \text{cf}(\lambda) \),
- \(h_i([x \cap \lambda_i]^{<\omega}) \) is \(\omega \)-Jonsson for \(x \cap \lambda_i \), and
- \(e(x) \cap \lambda = x \).

By Fact 2.6, 2.11, and Proposition 3.1, we have \(X \in \text{NSh}^{\text{**}}_{\kappa, \lambda} \). We consider the set \(e``X = \{ e(x) : x \in X \} \). Note that this set is a WNS\(\kappa, \lambda^{<\kappa} \)-positive set, so it is stationary in \(\mathcal{P}_\kappa \lambda^{<\kappa} \). Fix a sufficiently large regular cardinal \(\theta \) and let \(C = \{ M \cap \lambda^{<\kappa} : M \ni \langle H_\theta, \in \rangle, |M| < \kappa, M \cap \lambda^{<\kappa} \in e``X, \{ \lambda_i : i < \text{cf}(\lambda) \}, \langle f_\alpha : \alpha < \lambda^+ \rangle, \pi, e \} \subseteq M \) and \(M \cap \lambda^{<\kappa} \) is \(\pi \)-closed}. Then \(C \) is stationary in \(\mathcal{P}_\kappa \lambda^{<\kappa} \). Note that if \(M \cap \lambda^{<\kappa} \in C \) then \(M \cap \lambda \in X \). Moreover by the definition of \(e \), we have that \(\{ M \cap \lambda \}^{<\text{cf}(\kappa)} \subseteq M \).

The following claim assures that \(\{ x \cap \lambda^+ : x \in C \} \) is an unbounded subset of \(\mathcal{P}_\kappa \lambda^+ \) with size \(\lambda^+ \), which completes the proof.
CLAI M 4.5. Let $M \cap \lambda^{<\kappa} \in C$ and $M' \cap \lambda^{<\kappa} \in C$. If $\sup(M \cap \lambda^+)$
$= \sup(M' \cap \lambda^+)$, then $M \cap \lambda^+ = M' \cap \lambda^+$.

PROOF OF THE CLAIM 4.5. Let $M \cap \lambda^{<\kappa}, M' \cap \lambda^{<\kappa} \in C$ be such that
$\sup(M \cap \lambda^+) = \sup(M' \cap \lambda^+)$. Let $N = M \cap M'$. Note that $\sup(N \cap \lambda^+)$
$= \sup(M \cap \lambda^+)$ and $N \cap \lambda_i$ is closed under h_i.

SUBCLAIM 4.6. If $M \cap \lambda = N \cap \lambda$, then $M \cap \lambda^+ = N \cap \lambda^+$.

PROOF OF THE SUBCLAIM 4.6. Choose any $\alpha \in (M \cap \lambda^+) \setminus \lambda$. We have
$\beta \in N \cap \lambda^+$ such that $\alpha < \beta$. Let $\tau \in N$ be a bijection from λ to β. Since $\alpha < \beta$
and $\tau \in M$, there exists $\delta \in M \cap \lambda = N \cap \lambda$ such that $\pi(\delta) = \alpha$, hence $\alpha \in N \cap \lambda^+$.

We show $M \cap \lambda = N \cap \lambda$. To show this, we need the following claim.

SUBCLAIM 4.7. \{ $i < \text{cf}(\lambda) : \sup(N \cap \lambda_i) < \sup(M \cap \lambda_i)$ \} is bounded in $\text{cf}(\lambda)$.

PROOF OF THE SUBCLAIM 4.7. Assume otherwise. Then define $f \in \Pi\lambda_i$
by $f(i) \in (M \cap \lambda_i) \setminus \sup(N \cap \lambda_i)$ if $\sup(N \cap \lambda_i) < \sup(M \cap \lambda_i)$ and $f(i) = 0$
otherwise. Then $f \in M$ since $M \cap \lambda$ is closed under $< (M \cap \kappa)$-sequences. Because
$\langle f_\alpha : \alpha < \lambda \rangle$ is a scale for $\Pi\lambda_i$, there exists $\alpha \in M \cap \lambda^+$ such that $f <^* f_\alpha$, that is,
$\{ i < \text{cf}(\lambda) : f(i) \geq f_\alpha(i) \}$ is bounded in $\text{cf}(\lambda)$. Since $\sup(M \cap \lambda^+) = \sup(N \cap \lambda^+)$,
there exists $\beta \in N \cap \lambda^+$ such that $\alpha < \beta$. $f < f_\alpha <^* f_\beta$, so we can take $i < \text{cf}(\lambda)$
such that $f(i) \in (M \cap \lambda_i) \setminus \sup(N \cap \lambda_i)$ and $f(i) < f_\beta(i)$. However $f_\beta \in N$, hence
$f_\beta(i) \in N \cap \lambda_i$. This is a contradiction.

We return to the proof of the Claim. Let $i < \text{cf}(\lambda)$ be such that $\sup(M \cap \lambda_i)$
$= \sup(N \cap \lambda_i)$. Since $\text{ot}(M \cap \lambda_i)$ is regular, $\text{ot}(N \cap \lambda_i)$ is regular. Thus $|M \cap \lambda_i|
= |N \cap \lambda_i|$. Since $h_i[|M \cap \lambda_i|^{\omega} \text{ is } \omega$-Jonsson and $N \cap \lambda_i$ is closed under h_i, we have
$M \cap \lambda_i = N \cap \lambda_i$. There are unboundedly many such i, hence $M \cap \lambda = N \cap \lambda$. We
can show that $M' \cap \lambda = N \cap \lambda$ by the same argument. Thus $M \cap \lambda^+ = M' \cap \lambda^+$.

The following question is natural, but the author cannot answer:

QUESTION 1. Does $\lambda^{<\kappa} = \lambda^+$ follow from κ is mildly λ-ineffable and $\text{cf}(\lambda)< \kappa$?

Of course $\lambda^{<\kappa} = \lambda^+$ follows from mild ineffability of $\mathcal{P}_\kappa \lambda^{<\kappa}$ when $\text{cf}(\lambda) < \kappa$.
Unfortunately, however, mild ineffability of $\mathcal{P}_\kappa \lambda$ does not always lift up to that of $\mathcal{P}_\kappa \lambda^{<\kappa}$. (See the next section.)
5. The equivalence of the Shelah property and ineffability.

Abe [3] showed that ineffability and almost ineffability of $\mathcal{P}_\kappa \lambda$ are equivalent if $2^\lambda = \lambda^{<\kappa}$. We will see that if λ is strong limit and $\text{cf}(\lambda) < \kappa$ then ineffability and the Shelah property are equivalent. First we will check that such equivalence is impossible if $\text{cf}(\lambda) \geq \kappa$. Proposition 5.1 (3) was proved in Abe [3]. We present here a simple proof.

Proposition 5.1. Let X be a subset of $\mathcal{P}_\kappa \lambda$.

1. If X is Shelah, then $\{x \in X : X \cap \mathcal{P}_{x \cap \kappa} x \text{ is not Shelah in } \mathcal{P}_{x \cap \kappa} x\}$ has the Shelah property.
2. If X is almost ineffable, then $\{x \in X : X \cap \mathcal{P}_{x \cap \kappa} x \text{ is not almost ineffable in } \mathcal{P}_{x \cap \kappa} x\}$ is almost ineffable.
3. If X is ineffable, then $\{x \in X : X \cap \mathcal{P}_{x \cap \kappa} x \text{ is not ineffable in } \mathcal{P}_{x \cap \kappa} x\}$ is ineffable.

Proof. We will only show (3). (1) and (2) can be proved by a similar argument. Suppose $X \subseteq \mathcal{P}_\kappa \lambda$ is ineffable. We may assume that $x \cap \kappa$ is inaccessible for all $x \in X$. Let $Y = \{x \in X : X \cap \mathcal{P}_{x \cap \kappa} x \text{ is not ineffable in } \mathcal{P}_{x \cap \kappa} x\}$.

Let $D = \mathcal{P}_\kappa \lambda \cup \{\lambda\}$. Then the relation $<$ on $\mathcal{P}_\kappa \lambda$ can be extended to D by identifying λ as the maximal element of D with respect to the relation $<$. We consider $\mathcal{P}_\kappa \lambda$ as $\mathcal{P}_{\lambda \cap \kappa} \lambda$. Note that the relation $<$ on D is well-founded. To show that Y is ineffable, we prove, by using induction on $<$, that, for any $x \in D \cap (X \cup \{\lambda\})$, $Y \cap \mathcal{P}_{x \cap \kappa} x$ is ineffable in $\mathcal{P}_{x \cap \kappa} x$ if $X \cap \mathcal{P}_{x \cap \kappa} x$ is ineffable. This is sufficient to show the proposition. Let $x \in X \cup \{\lambda\}$ and assume this claim is verified for all $y \in X$ with $y < x$. Suppose $X \cap \mathcal{P}_{x \cap \kappa} x$ is ineffable but $Y \cap \mathcal{P}_{x \cap \kappa} x$ is not ineffable. Let $\langle a_z : z \in Y \cap \mathcal{P}_{x \cap \kappa} x \rangle$ be a sequence which witnesses $Y \cap \mathcal{P}_{x \cap \kappa} x$ is not ineffable. Since $X \cap \mathcal{P}_{x \cap \kappa} x$ is ineffable but $Y \cap \mathcal{P}_{x \cap \kappa} x$ is not ineffable, $Z = (X \setminus Y) \cap \mathcal{P}_{x \cap \kappa} x$ is ineffable. For each $y \in Z$, $X \cap \mathcal{P}_{y \cap \kappa} y$ is ineffable in $\mathcal{P}_{y \cap \kappa} y$. Hence $Y \cap \mathcal{P}_{y \cap \kappa} y$ is ineffable by the induction hypothesis. Hence we can apply the ineffability of $Y \cap \mathcal{P}_{y \cap \kappa} y$ to $\langle a_z : z \in Y \cap \mathcal{P}_{y \cap \kappa} y \rangle$. So there exists $b_y \subseteq y$ such that $\{z \in Y \cap \mathcal{P}_{y \cap \kappa} y : b_y \cap z = a_z\}$ is stationary in $\mathcal{P}_{y \cap \kappa} y$. Since Z is ineffable, there exists $B \subseteq x$ such that $\{y \in Z : B \cap y = b_y\}$ is stationary in $\mathcal{P}_{x \cap \kappa} x$. We check that $\{z \in Y \cap \mathcal{P}_{x \cap \kappa} x : a_z = B \cap z\}$ is stationary, which is a contradiction. Take $f : x \times x \rightarrow x$. We want to find $z \in Y \cap \mathcal{P}_{x \cap \kappa} x$ such that $B \cap z = a_z$, $z \cap \kappa \subseteq \kappa$, and $f^\kappa(z \times z) \subseteq z$. Since $\{y \in Z : B \cap y = b_y\}$ is stationary in $\mathcal{P}_{x \cap \kappa} x$, there exists $y \in Z$ such that $B \cap y = b_y$ and $f^\kappa(y \times y) \subseteq y$. Because $\{z \in Y \cap \mathcal{P}_{y \cap \kappa} y : b_y \cap z = a_z\}$ is stationary in $\mathcal{P}_{y \cap \kappa} y$, we can take $z \in Y \cap \mathcal{P}_{y \cap \kappa} y$ such that $a_z = b_y \cap z = B \cap z$, $z \cap \kappa \subseteq \kappa$, and $f^\kappa(z \times z) \subseteq z$. This completes the proof. □
Assume $\text{cf}(\lambda) \geq \kappa$.

(1) If κ is λ-Shelah, then $\text{NSh}_{\kappa\lambda} \subseteq \text{NAIn}_{\kappa\lambda}$.

(2) If κ is almost λ-ineffable, then $\text{NAIn}_{\kappa\lambda} \subseteq \text{NIn}_{\kappa\lambda}$.

Proof.

(1). By Abe [3], $\{x \in \mathcal{P}_{\kappa\lambda} : x \cap \kappa$ is x-Shelah} $\in \text{NAIn}_{\kappa\lambda}^{*\kappa\lambda}$. Hence by Proposition 5.1, $\{x \in \mathcal{P}_{\kappa\lambda} : x \cap \kappa$ is not x-Shelah} is Shelah but not almost ineffable.

(2). By Kamo [17], $\{x \in \mathcal{P}_{\kappa\lambda} : x \cap \kappa$ is almost x-ineffable} $\in \text{NIn}_{\kappa\lambda}^{*\kappa\lambda}$. So $\{x \in \mathcal{P}_{\kappa\lambda} : x \cap \kappa$ is not almost x-ineffable} is almost ineffable but not ineffable.

PROPOSITION 5.3. Assume λ is a strong limit cardinal with $\text{cf}(\lambda) < \kappa$ (so $2^\lambda = \lambda^{<\kappa}$ holds). Let $\langle A_x : x \in \mathcal{P}_{\kappa\lambda} \rangle$ be an enumeration of $\mathcal{P}(\lambda)$ and $X = \{x \in \mathcal{P}_{\kappa\lambda} : \forall a \subseteq x \exists y < x (a = A_y \cap x)\}$. Then $\text{NSh}_{\kappa\lambda} = \text{NIn}_{\kappa\lambda} = \text{NAIn}_{\kappa\lambda} = \text{WNS}_{\kappa\lambda}|X$. In particular the following are equivalent:

(1) κ is λ-Shelah.

(2) κ is almost λ-ineffable.

(3) κ is λ-ineffable.

(4) $X \in \text{WNS}_{\kappa\lambda}^{+\kappa\lambda}$.

Proof. Since $\text{WNS}_{\kappa\lambda} \subseteq \text{NSh}_{\kappa\lambda} \subseteq \text{NAIn}_{\kappa\lambda} \subseteq \text{NIn}_{\kappa\lambda}$, it is enough to show that $X \in \text{NSh}_{\kappa\lambda}^{*\kappa\lambda}$ and $\text{NIn}_{\kappa\lambda} \subseteq \text{WNS}_{\kappa\lambda}|X$. First we show that $X \in \text{NSh}_{\kappa\lambda}^{*\kappa\lambda}$. Let $\langle B_\xi : \xi < \lambda \rangle$ be an enumeration of all bounded subsets of λ. First we claim that $Z = \{x \in \mathcal{P}_{\kappa\lambda} : \forall a \subseteq x (a is bounded in $\lambda \rightarrow \exists \xi \in x (a = B_\xi \cap x))\} \in \text{NSh}_{\kappa\lambda}^{*\kappa\lambda}$. Assume otherwise, then by the normality of $\text{NSh}_{\kappa\lambda}$, there exists $\alpha < \lambda$ such that $Y = \{x \in \mathcal{P}_{\kappa\lambda} : \exists a \subseteq x \ni \exists \xi \in x (a \neq B_\xi \cap x)\} \in \text{NSh}_{\kappa\lambda}^{*\kappa\lambda}$. For each $x \in Y$, let $a_x \subseteq x \cap \alpha$ be a witness to $x \in Y$. Let $f_x : x \cap \alpha \rightarrow 2$ be the characteristic function of a_x and $g_x : x \rightarrow x$ a function such that $g_x(\beta) = a_x \triangle (B_\beta \cap x)$ for each $\beta \in x$. By the Shelah property of Z, there exist $f : \alpha \rightarrow 2$ and $g : \lambda \rightarrow \lambda$ such that $\{x \in Y : f_x|y = f|y \text{ and } g_x|y = g|y\}$ is unbounded for all $y \in \mathcal{P}_{\kappa\lambda}$. Let $B = f^{-1}\{1\}$. $B \subseteq \alpha$, so $B = B_\xi$ for some $\xi < \lambda$. Take $y \in \mathcal{P}_{\kappa\lambda}$ such that $\xi \in y$ and y is closed under g. Take $x \in Y$ such that $y \subseteq x$, $f_x|y = f|y$, and $g_x|y = g|y$. Then $B_\xi \cap x \neq a_x$ because $\xi \in y \subseteq X$. Since $f|x$ is the characteristic function of $B_\xi \cap x$, f_x is the characteristic function of $B_\xi \cap x$, f_x is that of a_x, and $g_x(\xi) \in a_x \triangle (B_\xi \cap x)$, we have $f_x(g_x(\xi)) \neq f(\xi)$. Since $\xi \in y$ and y is closed under g, we have $g_x(\xi) = g(\xi) \in y$. But then $f_x(g(\xi)) = f(g(\xi))$, which is a contradiction.

Second we show that $X \in \text{NSh}_{\kappa\lambda}^{*\kappa\lambda}$. Fix an increasing sequence $\langle \lambda_i : i < \text{cf}(\lambda) \rangle$ which converges to λ. Assume $X \notin \text{NSh}_{\kappa\lambda}^{*\kappa\lambda}$. Then $Z' = \{x \in Z : \lambda_i \in x \land i < \text{cf}(\lambda) \subseteq x \land \exists a \subseteq x \forall y < x (a \neq A_y \cap x)\} \in \text{NSh}_{\kappa\lambda}^{+\kappa\lambda}$. For each $x \in Z'$,
let $a_x \subseteq x$ be a witness to $x \in Z'$. For $x \in Z'$ and $i < \text{cf}(\lambda)$, take $\xi^x_i \in x$ such that $a_x \cap \lambda_i = A_{\xi^x_i} \cap x$. Then, by the strong normality of $\text{NSh}_\kappa \lambda$, there exists $\langle \xi^x_i : i < \text{cf}(\lambda) \rangle$ such that $\{ x \in Z' : \forall i < \text{cf}(\lambda) (\xi^x_i = \xi_i) \} \in \text{NSh}_\kappa^+ \lambda$. Note that if $i < j < \text{cf}(\lambda)$, then $A_{\xi_i} = A_{\xi_j} \cap \lambda_i$. Thus we can define $A \subseteq \lambda$ by $A \cap \lambda_i = A_{\xi_i}$ for all $i < \text{cf}(\lambda)$. Take $y \in \mathcal{P}_\kappa \lambda$ such that $A = A_y$. It is easy to see that for $x \in Z'$, $a_x = A_y \cap x$ if $\xi^x_i = \xi_i$ for all $i < \text{cf}(\lambda)$, which is a contradiction. Thus we have $X \in \text{NSh}_\kappa^+ \lambda$.

Last we show that $\text{NIn}_{\kappa \lambda} \subseteq \text{WNS}_{\kappa \lambda}|X$. Let $W \in (\text{WNS}_{\kappa \lambda}|X)^+$. We may assume $W \subseteq X$. We claim that W is ineffable. To see this, take an arbitrary sequence $\langle a_x : x \in W \rangle$ such that $a_x \subseteq x$ for all $x \in W$. By the definition of X, for each $x \in W$ there exists $y_x < x$ such that $a_x = A_{y_x} \cap x$. Since $W \in \text{WNS}_{\kappa \lambda}^+$, there exists $y \in \mathcal{P}_\kappa \lambda$ such that $W' = \{ x \in W : y_x = y \} \in \text{WNS}_{\kappa \lambda}^+$. Then W' is stationary and it is clear that $a_x = A_y \cap x$ for all $x \in W'$.

Remark. If we replace “λ is strong limit” by “$2^\lambda = \lambda^{<\kappa}$” in the assumption of the previous proposition, then we can obtain that $\text{NAIn}_{\kappa \lambda} = \text{NIn}_{\kappa \lambda} = \text{WNS}_{\kappa \lambda}|X$. The proof that $X \in \text{NAIn}_{\kappa \lambda}^+$ is easy, so we omit it.

Corollary 5.4. Assume $2^\lambda = \lambda^{<\kappa}$. For any $Y \in \text{NIn}_{\kappa \lambda}^+$ ($= \text{NAIn}_{\kappa \lambda}^+$) and $\langle a_x : x \in Y \rangle$ with $a_x \subseteq x$, there exists $A \subseteq \lambda$ such that $\{ x \in Y : A \cap x = a_x \} \in \text{NIn}_{\kappa \lambda}^+$.

Proof. By the above remark, $\text{NIn}_{\kappa \lambda} = \text{NAIn}_{\kappa \lambda} = \text{WNS}_{\kappa \lambda}|X$ holds, where X is as in Proposition 5.3. We can argue as in the proof of $\text{NIn}_{\kappa \lambda} \subseteq \text{WNS}_{\kappa \lambda}|X$ in Proposition 5.3. □

Next we turn to completely ineffability of $\mathcal{P}_\kappa \lambda$.

Definition 5.5. Let I be an ideal over $\mathcal{P}_\kappa \lambda$. \mathcal{W} is called an I-partition if the following hold:

1. $\mathcal{W} \subseteq I^+$,
2. $\forall Y \in I^+ \exists Z \in \mathcal{W} (Y \cap Z \in I^+)$, and
3. $\forall Y, Z \in \mathcal{W} (Y \neq Z \Rightarrow Y \cap Z \in I)$.

Let μ and ν be cardinals. An ideal I over $\mathcal{P}_\kappa \lambda$ is called (μ, ν)-distributive if, for every $X \in I^+$ and every $\langle \mathcal{W}_\alpha : \alpha < \mu \rangle$ where each \mathcal{W}_α is an I-partition with $|\mathcal{W}_\alpha| \leq \nu$, there exists $Y \in (I|X)^+$ such that Y satisfies the following:

For every $\alpha < \mu$, there exists $Z \in \mathcal{W}_\alpha$ such that $Y \setminus Z \in I$.

Fact 5.6 (Johnson [16]). Let I be an ideal over $\mathcal{P}_\kappa \lambda$. Then the following are equivalent:

1. I is normal and (λ, λ)-distributive.
(2) For all \(X \in I^+\) and \(\langle a_x : x \in X \rangle\) with \(a_x \subseteq x\), there exists \(A \subseteq \lambda\) such that \(\{x \in X : A \cap x = a_x\} \in I^+\).

We say that \(X \subseteq \mathcal{P}_\kappa \lambda\) is completely ineffable if there exists a proper \((\lambda, \lambda)\)-distributive normal ideal \(I\) such that \(X \in I^+\), and that \(\kappa\) is completely \(\lambda\)-ineffable if \(\mathcal{P}_\kappa \lambda\) is completely ineffable. Let \(\text{NCIn}_{\kappa \lambda} = \{X \subseteq \mathcal{P}_\kappa \lambda : X \text{ is not completely ineffable}\}\). Then \(\text{NCIn}_{\kappa \lambda}\) is the minimal normal \((\lambda, \lambda)\)-distributive ideal and, equivalently, is the minimal normal ideal which satisfies (2) of the above fact. Clearly \(\text{NIn}_{\kappa \lambda} \subseteq \text{NCIn}_{\kappa \lambda}\) holds.

Proposition 5.7. Assume \(\operatorname{cf}(\lambda) \geq \kappa\) and \(\kappa\) is \(\lambda\)-ineffable. Then \(\text{NIn}_{\kappa \lambda} \subseteq \text{NCIn}_{\kappa \lambda}\).

Proof. By Kamo [17], \(\{x \in \mathcal{P}_\kappa \lambda : x \cap \kappa \text{ is } x\text{-ineffable}\} \in \text{NCIn}_{\kappa \lambda}^*\). Hence the assertion follows from Proposition 5.1. \(\square\)

The next proposition can be easily verified by using Corollary 5.4 and Fact 5.6.

Proposition 5.8. Assume \(2^\lambda = \lambda^{<\kappa}\). Then \(\text{NIn}_{\kappa \lambda} = \text{NCIn}_{\kappa \lambda}\) holds. Thus \(\kappa\) is \(\lambda\)-ineffable if and only if \(\kappa\) is completely \(\lambda\)-ineffable under the assumption \(2^\lambda = \lambda^{<\kappa}\).

Now we show the preservation of ineffability under certain forcing methods. For a poset \(P\) and an ordinal \(\alpha\), \(\Gamma_\alpha(P)\) denotes the following 2-player game:

<table>
<thead>
<tr>
<th>Player I: (p_0)</th>
<th>(p_1)</th>
<th>(\cdots)</th>
<th>(p_{\omega+1})</th>
<th>(\cdots)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Player II: (q_0)</td>
<td>(q_1)</td>
<td>(\cdots)</td>
<td>(q_\omega)</td>
<td>(q_{\omega+1})</td>
</tr>
</tbody>
</table>

Player I and II choose elements of \(P\) alternately such that \(p_0 \geq q_0 \geq p_1 \geq q_1 \geq \cdots\). At limit stage \(\eta\), only Player II moves and Player II chooses a lower bound \(q_\eta\) of \(\{q_\xi : \xi < \eta\}\). Player II wins if this game can be continued to length \(\alpha\), that is, Player II can choose \(q_\beta\) for all \(\beta < \alpha\). A poset \(P\) is \(\alpha\)-strategically closed if Player II has a winning strategy in \(\Gamma_\alpha(P)\). It is well-known that \(\alpha\)-strategically closed posets add no new \(< \alpha\)-sequences.

Proposition 5.9. Assume \(\lambda\) is a strong limit cardinal with \(\operatorname{cf}(\lambda) < \kappa\). If \(\kappa\) is \(\lambda\)-ineffable (equivalently, \(\lambda\)-Shelah, almost \(\lambda\)-ineffable, or completely \(\lambda\)-ineffable), then \(\Vdash_P "\kappa\ is \lambda\text{-ineffable}"\) for every \(\lambda^+\)-strategically closed poset \(P\).

Proof. By Proposition 4.4, we have \(2^\lambda = \lambda^{<\kappa} = \lambda^+\). Let \(\langle A_x : x \in \mathcal{P}_\kappa \lambda \rangle\) be an enumeration of \(\mathcal{P}(\lambda)\) and define \(X\) as in Proposition 5.3. Then \(\text{NIn}_{\kappa \lambda} \subseteq \text{NCIn}_{\kappa \lambda}\).
= WNS_{λ^+}\lambda].

Since \(λ^+-\text{strategically closed} \) forcing adds no new subsets of \(λ \), \(\langle A_x : x ∈ ℙ_λ λ \rangle \) remains an enumeration of \(ℙ(λ) \) in \(V^P \). Thus it is enough to show that \(X ∈ WNS_{κλ}^+ \) in \(V^P \). Let \(p ∈ P \), and let \(ʃ \) be a \(P-\text{name} \) such that \(p ⊩ "ʃ : ℙ_λ λ → ℙ_λ \". \) Let \(\langle x_α : α < λ^+ \rangle \) be an enumeration of \(ℙ_λ \). Using the \(λ^+-\text{strategically closedness} \) of \(P \), we construct \(\langle y_α ∈ ℙ_λ : α < λ^+ \rangle \) and a descending sequence \(\langle p_α ∈ P : α < λ^+ \rangle \) such that \(p_0 ≤ p \) and \(p_α ⊩ "ʃ(x_α) = y_α" \) for all \(α < λ^+ \). Now define \(g : ℙ_λ λ → ℙ_λ \lambda \) by \(g(x_α) = y_α \). Since \(X ∈ WNS_{κλ}^+ \), there exists \(x ∈ X \) such that \(g^"ℙ_{x∩κ}x \subseteq ℙ_{x∩κ}x \". \) Take a sufficiently large \(β < λ^+ \) such that \(ℙ_{x∩κ}x \subseteq \{ x_α : α < β \} \). Then \(p_β \models "ʃ|ℙ_{x∩κ}x = g|ℙ_{x∩κ}x". \) Hence we conclude that \(p_β ∣ " x ∈ X \cap C_{ʃ}. \)

By Proposition 5.9, we have the following corollary:

Corollary 5.10. Assume \(λ \) is a strong limit cardinal with \(cf(λ) < κ \) and \(κ \) is \(λ \)-ineffable. Then there exists a poset which preserves all cofinalities and forces that \(κ \) remains completely \(λ \)-ineffable and \(\{ α < λ^+ : cf(α) < κ \} \) has a non-reflecting stationary subset.

Proof. Let \(P \) be the standard forcing notion which adds a non-reflecting stationary subset of \(\{ α < λ^+ : cf(α) < κ \} \) (see Burgess [5]). This poset is \(λ^+-\text{strategically closed} \), hence, by Lemma 5.9, \(κ \) is completely \(λ \)-ineffable in \(V^P \). \(□ \)

Abe [3] proved that \(λ \)-ineffability does not imply \(λ^{<κ} \)-ineffability if \(cf(λ) < κ \). We can improve Abe’s result to the following:

Corollary 5.11. Relative to a certain large cardinal assumption, it is consistent that \(κ \) is completely \(λ \)-ineffable with \(cf(λ) < κ \), but not mildly \(λ^{<κ} \)-ineffable.

Proof. We suppose that \(κ \) is completely \(λ \)-ineffable with \(cf(λ) < κ \) and that \(\{ α < λ^+ : cf(α) < κ \} \) has a non-reflecting stationary subset. This is consistent by Corollary 5.10. By Proposition 4.4, \(λ^{<κ} = λ^+ \) holds. By Proposition 4.3, \(κ \) is not mildly \(λ^+ \)-ineffable. Hence, in this model, \(κ \) is completely \(λ \)-ineffable but not mildly \(λ^{<κ} \)-ineffable. \(□ \)

Now we investigate the precipitousness of \(N_{nλ} \).

Definition 5.12. For an ideal \(I \) over \(ℙ_λ \), \(I \) is said to be precipitous if, for every \(X ∈ I^+ \) and for every \(I \)-partitions \(\langle ℨ_n : n < ω \rangle \) such that \(\forall n ∈ ω ∃ Y ∈ ℨ_{n+1} ∃ Z ∈ ℨ_n (Y ⊆ Z) \), there exists a sequence \(\langle X_n : n < ω \rangle \) such that \(X_n ∈ ℨ_n \) for all \(n < ω \), \(X ≥ X_0 ⊇ X_1 ⊇ ⋯ ⊇ X_n ⊇ ⋯ \), and \(∩_{n<ω} X_n ≠ ∅ \).

For an information about precipitousness, see section 22 in Jech [14].
Furthermore it is easy to see that we can easily verify the following lemma:

Lemma 5.14. Let κ be a Mahlo cardinal and let $e : P_\kappa \rightarrow P_\kappa^{<\kappa}$ be a canonical map. Then, for $X \in WNS^*_\kappa\lambda$, $e^"X \in WNS^*_\kappa^{<\kappa}$. For each $Y \subseteq X$, $Y \in WNS^*_\kappa\lambda$ if and only if $e^"Y \in WNS^*_\kappa^{<\kappa}$. Furthermore it is easy to see that $e|X$ is a bijection from X to $e^"X$. Using this, we can easily verify the following lemma:

Fact 5.13 (Abe [3]). If $\text{cf}(\lambda) \geq \kappa$, then $\text{NCIn}_{\kappa\lambda}$ is not precipitous.

Now assume κ is a Mahlo cardinal. Let $e : P_\kappa \rightarrow P_\kappa^{<\kappa}$ be a canonical map and $X = \{x \in P_\kappa : x \cap \kappa$ is inaccessible, $e(x) \cap \lambda = x\}$. Then $X \in WNS^*_\kappa\lambda$ and $e^"X \in WNS^*_\kappa^{<\kappa}$. For each $Y \subseteq X$, $Y \in WNS^*_\kappa\lambda$ if and only if $e^"Y \in WNS^*_\kappa^{<\kappa}$. Furthermore it is easy to see that $e|X$ is a bijection from X to $e^"X$. Using this, we can easily verify the following lemma:

Lemma 5.14. Let κ be a Mahlo cardinal and let $e : P_\kappa \rightarrow P_\kappa^{<\kappa}$ be a canonical map. Then, for $X \in WNS^*_\kappa\lambda$, $WNS^*_\kappa\lambda|X$ is precipitous if and only if $WNS^*_\kappa^{<\kappa}|e^"X$ is precipitous. In particular $WNS^*_\kappa\lambda$ is precipitous if and only if $WNS^*_\kappa^{<\kappa}$ is precipitous.

Proposition 5.15. Assume λ is a strong limit cardinal with $\text{cf}(\lambda) < \kappa$ and κ is λ-Shelah (and so is λ-ineffable, etc.). Let μ be a Woodin cardinal greater than λ. Then $\models \text{Col}(\lambda^+, < \mu)$ “$\text{NSh}_{\kappa\lambda} = \text{NAIn}_{\kappa\lambda} = \text{NIn}_{\kappa\lambda} = \text{NCIn}_{\kappa\lambda}$ is precipitous”, where $\text{Col}(\lambda^+, < \mu)$ is the standard λ^+-closed poset which collapses μ to λ^{++}.

Proof. Let G be a $(V, \text{Col}(\lambda^+, < \mu))$-generic filter and work in $V[G]$. $\text{Col}(\lambda^+, < \mu)$ is λ^+-strategically closed. Hence κ is λ-Shelah, and $\text{NSh}_{\kappa\lambda} = \text{NAIn}_{\kappa\lambda} = \text{NIn}_{\kappa\lambda} = \text{NCIn}_{\kappa\lambda}$ for some X in $V[G]$. It is well-known that $\text{NSh}_{\kappa\lambda}$ is precipitous in $V[G]$ (see Goldring [12]). Since $(\lambda^+)^{<\kappa} = \lambda^+$, $\text{WNS}_{\kappa\lambda} = \text{NS}_{\kappa\lambda}^{++}|Y$ for some Y. Thus $\text{WNS}_{\kappa\lambda}^{++}$ is also precipitous. By the previous lemma, we have that $\text{WNS}_{\kappa\lambda}$ is precipitous. Hence $\text{WNS}_{\kappa\lambda}|X = \text{NSh}_{\kappa\lambda} = \text{NAIn}_{\kappa\lambda} = \text{NIn}_{\kappa\lambda} = \text{NCIn}_{\kappa\lambda}$ is precipitous.

Question 2. Can $\text{NSh}_{\kappa\lambda}$, $\text{NAIn}_{\kappa\lambda}$, and $\text{NIn}_{\kappa\lambda}$ be precipitous even if $\text{cf}(\lambda) \geq \kappa$? Furthermore can these ideals be λ^+-saturated?

6. Relationship between Π^1_1-indescribability and ineffability.

The indescribability of $P_\kappa\lambda$ was introduced by Baumgartner and Carr [8] as a generalization of the indescribability of a cardinal. First we explain some basic notation. A sentence φ is a Π^1_1-sentence if φ is of the form $\forall X_0 \forall X_1 \cdots \forall X_n \psi(X_0, X_1, \ldots, X_n)$, where X_0, X_1, \ldots, X_n are type 2 variables, and $\psi(X_0, X_1, \ldots, X_n)$ is a first order sentence with language $\{\varepsilon, =, X_0, \ldots, X_n\}$ where X_i is a unary predicate symbol. In the intended semantics, if D is the domain of a structure, type 2 variables will range over $\mathcal{P}(D)$.

Definition 6.1. An uncountable cardinal κ is Π^1_1-indecomposable if, for any $R \subseteq V_\kappa$ and Π^1_1-sentence φ over the structure $(V_\kappa, \varepsilon, R)$ (that is, φ is a Π^1_1-sentence with language $\{\varepsilon, =, R\}$),
Ineffability of $P_{\kappa\lambda}$ for λ with small cofinality

$\langle V_\alpha, \in, R \rangle \models \phi \Rightarrow \exists \alpha < \kappa (\langle V_\alpha, \in, R \cap V_\alpha \rangle \models \phi)$,

where V_α is the set of all sets with rank less than α.

FACT 6.2. An uncountable cardinal κ is weakly compact if and only if κ is Π^1_1-indescribable.

Baumgartner defined the following:

Definition 6.3. Let S be a set with $\kappa \subseteq S$. Define $V_\alpha(\kappa, S)$ by induction on $\alpha \leq \kappa$ in the following way:

- $V_0(\kappa, S) = S$,
- $V_{\alpha+1}(\kappa, S) = V_\alpha(\kappa, S) \cup P_\kappa(V_\alpha(\kappa, S))$, and
- $V_\alpha(\kappa, S) = \bigcup_{\beta < \alpha} V_\beta(\kappa, S)$ if α is a limit ordinal.

For $X \subseteq P_\kappa S$, we say that X is Π^1_1-indescribable if, for every $R \subseteq V_\kappa(\kappa, S)$ and Π^1_1-sentence ϕ over the structure $\langle V_\kappa(\kappa, S), \in, R \rangle$, the following holds:

If $\langle V_\kappa(\kappa, S), \in, R \rangle \models \phi$, then there exists $x \in X$ such that $|x \cap \kappa| = x \cap \kappa$ and ϕ reflects to x, that is,

$\langle V_{x \cap \kappa}(x \cap \kappa), \in, R \cap V_{x \cap \kappa}(x \cap \kappa, x) \rangle \models \phi$.

Let $\Pi_{\kappa\lambda}$ be the set of all $X \subseteq P_\kappa \lambda$ such that X is not Π^1_1-indescribable.

Fact 6.4 (Abe [2], Carr [8]).

1. $\Pi_{\kappa\lambda}$ is a strongly normal ideal over $P_\kappa \lambda$.
2. $\text{NSh}_{\kappa\lambda} \subseteq \Pi_{\kappa\lambda}$.
3. If $\text{cf}(\lambda) \geq \kappa$, then $\text{NSh}_{\kappa\lambda} = \Pi_{\kappa\lambda}$.

For further general background about indescribability of $P_\kappa \lambda$, see Abe [2] and Carr [8].

We will use the following combinatorial characterization of Π^1_1-indescribability.

Fact 6.5 (Abe [2]). For $X \subseteq P_\kappa \lambda$, the following are equivalent:

1. X is Π^1_1-indescribable.
2. e^X is Shelah in $P_\kappa \lambda^{<\kappa}$, where e is a canonical map from $P_\kappa \lambda$ to $P_\kappa \lambda^{<\kappa}$.
3. For all $\langle f_x : x \in X \rangle$ with $f_x : P_{x \cap \kappa} \lambda \rightarrow P_{x \cap \kappa} \lambda$, there exists $f : P_\kappa \lambda \rightarrow P_\kappa \lambda$ such that $\{ x \in X : f|P_{y \cap \kappa} \lambda = f_x|P_{y \cap \kappa} \lambda \}$ is unbounded for all $y \in P_\kappa \lambda$.

First we show that Π^1_1-indescribability implies a reflection principle for
WNS\(\kappa,\lambda\)-positive sets.

Lemma 6.6. Assume \(\mathcal{P}_\kappa\lambda\) is \(\Pi^1_1\)-indescribable. Then, for each \(X \in \text{WNS}^+\), \(\{x \in \mathcal{P}_\kappa\lambda : x \cap \kappa \text{ is regular, } X \cap \mathcal{P}_{x \cap \kappa}x \in \text{WNS}^+\} \in \Pi^*_\kappa\lambda\).

Proof. Assume otherwise. Then \(Y = \{x \in \mathcal{P}_\kappa\lambda : x \cap \kappa \text{ is regular and } X \cap \mathcal{P}_{x \cap \kappa}x \in \text{WNS}^+\} \in \Pi^*_\kappa\lambda\). For each \(x \in Y\), let \(f_x : \mathcal{P}_{x \cap \kappa}x \rightarrow \mathcal{P}_{x \cap \kappa}x\) be a function which witnesses \(X \cap \mathcal{P}_{x \cap \kappa}x \in \text{WNS}^+\). By Fact 6.5, we can take \(f : \mathcal{P}_\kappa\lambda \rightarrow \mathcal{P}_\kappa\lambda\) such that, for all \(y \in \mathcal{P}_\kappa\lambda\), \(\{x \in Y : f|\mathcal{P}_{y \cap \kappa}y = f_x|\mathcal{P}_{y \cap \kappa}y\}\) is unbounded. Since \(X \in \text{WNS}^+\), there exists \(y \in X\) such that \(f^y|\mathcal{P}_{y \cap \kappa}y \subseteq \mathcal{P}_{y \cap \kappa}y\). Take \(x \in Y\) such that \(y < x\) and \(f|\mathcal{P}_{y \cap \kappa}y = f_x|\mathcal{P}_{y \cap \kappa}y\). Then \(y \in X \cap \mathcal{P}_{x \cap \kappa}x\) and \(f^y|\mathcal{P}_{y \cap \kappa}y = f^x|\mathcal{P}_{y \cap \kappa}y \subseteq \mathcal{P}_{y \cap \kappa}y\), thus \(y \in (X \cap \mathcal{P}_{x \cap \kappa}x) \cap C_f\). This is a contradiction. \(\Box\)

We have another proof since \(\text{"}X \in \text{WNS}^+\text{"}\) can be stated in a \(\Pi^1_1\)-sentence over \(\langle V_{\kappa}(\kappa)\rangle\). Also note that, for every \(X \in \text{NS}^+\), \(\{x \in \mathcal{P}_\kappa\lambda : x \cap \kappa \text{ is regular, } X \cap \mathcal{P}_{x \cap \kappa}x \in \text{NS}^+\} \in \text{NS}^*_\kappa\lambda\).

The next proposition shows that \(\Pi^1_1\)-indescribability of \(\mathcal{P}_\kappa\lambda\) can be much stronger than ineffability if \(\text{cf}(\lambda) < \kappa\).

Proposition 6.7. Assume \(2^\lambda = \lambda^{<\kappa}\). Then the following hold:

1. \(\text{NIn}_{\kappa,\lambda} \subseteq \Pi^*_\kappa\lambda\). Hence \(\kappa\) is \(\lambda\)-ineffable if \(\mathcal{P}_\kappa\lambda\) is \(\Pi^1_1\)-indescribable.
2. If \(Y \subseteq \mathcal{P}_\kappa\lambda\) is ineffable, then \(\{x \in \mathcal{P}_\kappa\lambda : Y \cap \mathcal{P}_{x \cap \kappa}x \text{ is ineffable}\} \in \Pi^*_\kappa\lambda\).
3. If \(\kappa\) is \(\lambda\)-ineffable, then \(\text{NIn}_{\kappa,\lambda} \nsubseteq \Pi^*_\kappa\lambda\).

Proof. Take \(X\) and \(\langle A_x : x \in \mathcal{P}_\kappa\lambda\rangle\) as in Proposition 5.3.

1. By the remark after Proposition 5.3, \(\text{NIn}_{\kappa,\lambda} = \text{WNS}_{\kappa,\lambda}|X\) holds. Since \(\text{WNS}_{\kappa,\lambda} \subseteq \text{NSH}_{\kappa,\lambda} \subseteq \Pi^*_\kappa\lambda\), it is enough to show that \(X \in \Pi^*_\kappa\lambda\). Assume otherwise. Then \(Y = \{x \in \mathcal{P}_\kappa\lambda : \exists a_x \subseteq x \forall y < x (a_x \neq A_y \cap x)\} \in \Pi^*_\kappa\lambda\). For each \(x \in Y\), let \(a_x \subseteq x\) be a witness to \(x \in Y\). Now define \(f_x : x \rightarrow 2\) and \(g_x : \mathcal{P}_{x \cap \kappa}x \rightarrow x\) as follows: \(f_x\) is the characteristic function of \(a_x\) and \(g_x(y) \in a_x \triangle (A_y \cap x)\). Then there exist \(f : \lambda \rightarrow 2\) and \(g : \mathcal{P}_\kappa\lambda \rightarrow \lambda\) such that \(\{x \in Y : f_x|y = f|y, g_x|\mathcal{P}_{y \cap \kappa}y = g|\mathcal{P}_{y \cap \kappa}y\}\) is unbounded for all \(y \in \mathcal{P}_\kappa\lambda\). Let \(A = f^{-1}_x(\{1\})\). Then \(A = A_x\) for some \(z \in \mathcal{P}_\kappa\lambda\). Take \(y \in \mathcal{P}_\kappa\lambda\) such that \(z < y\) and \(g^y|\mathcal{P}_{y \cap \kappa}y \subseteq y\). Then we can find \(x \in Y\) such that \(y < x, f|y = f_x|y, g_x|\mathcal{P}_{y \cap \kappa}y = g|\mathcal{P}_{y \cap \kappa}y\). Since \(z < y\) \(< x, a_x \neq A_z \cap x\). Since \(g_x(z) = g(z)\), we have that \(g(z) \in a_x \triangle (A_z \cap x)\). However, \(g(z) \in y\), thus \(f(g(z)) = f_x(g(z))\), which contradicts to \(g(z) \in a_x \triangle (A_x \cap x)\).

2. Let \(Z \subseteq \mathcal{P}_\kappa\lambda\) be ineffable. Since \(\text{NIn}_{\kappa,\lambda} = \text{WNS}_{\kappa,\lambda}|X\), we may assume that \(Z \subseteq X\). Let \(x \in X\) such that \(x \cap \kappa\) is regular. By the definition of \(X\), \(\langle A_y \cap x : y < x\rangle\) can be seen as an enumeration of \(\mathcal{P}(x)\) which is indexed by elements of \(\mathcal{P}_{x \cap \kappa}x\). Let \(X' = \{y \in \mathcal{P}_{x \cap \kappa}x : \forall a \subseteq y \exists z < y (a = A_z \cap y)\}\).

T. Usaba

952
Then $X' = X \cap \mathcal{P}_{x \cap \kappa} x$. By the proof of Proposition 5.3, we see that, for $x \in X$ such that $x \cap \kappa$ is regular, $Z \cap \mathcal{P}_{x \cap \kappa} x$ is ineffable if $Z \cap \mathcal{P}_{x \cap \kappa} x \in \text{WNS}_{x \cap \kappa}$. It is clear that $\{x \in X \mid x \cap \kappa$ is regular, $Z \cap \mathcal{P}_{x \cap \kappa} x \in \text{WNS}_{x \cap \kappa}\} \in \Pi^*_{\kappa \lambda}$ by Lemma 6.6.

(3). By (2), it is enough to show that $\{x \in \mathcal{P}_{\kappa \lambda} \mid x \cap \kappa$ is not x-ineffable$\} \in \text{NIn}^+_{\kappa \lambda}$. This follows from Proposition 5.1. □

Assume $\lambda = \kappa^+\omega$, $2^\lambda = \lambda^{<\kappa}$, and $\mathcal{P}_{\kappa \lambda}$ is Π^1_2-indescribable. Then $\{x \in \mathcal{P}_{\kappa \lambda} \mid \text{ot}(x) = (x \cap \kappa)^{+\omega}\} \in \Pi^*_{\kappa \lambda}$. By the above proposition, we have $\{x \in \mathcal{P}_{\kappa \lambda} \mid \text{ot}(x) = x \cap \kappa^{+\omega}$ and $x \cap \kappa$ is x-ineffable$\} \in \Pi^*_{\kappa \lambda}$, thus we can show that $\{\alpha < \kappa : \alpha$ is $\alpha^{+\omega}$-ineffable$\}$ is stationary in κ. In particular, under GCH, if $\kappa = \min\{\alpha : \alpha$ is $\alpha^{+\omega}$-ineffable$\}$, then $\mathcal{P}_{\kappa \kappa^{+\omega}}$ is not Π^1_2-indescribable. Hence, the assumption that $\text{cf}(\lambda) \geq \kappa$ in (3) of Fact 6.4 cannot be dropped.

Lemma 6.8. Let $X \subseteq \mathcal{P}_{\kappa \lambda}$ be Π^1_2-indescribable. Then $\{x \in X \mid x \cap \mathcal{P}_{x \cap \kappa} x$ is not Π^1_2-indescribable$\}$.

Proof. Let $Y = \{x \in X \mid x \cap \mathcal{P}_{x \cap \kappa} x$ is not Π^1_2-indescribable$, R \subseteq V_\kappa(\kappa, \lambda)$, and φ be a Π^1_1-sentence such that $(V_\kappa(\kappa, \lambda), \in, R) \models \varphi$. We show that there exists $x \in Y$ such that φ reflects to x. Take $x \in X$ such that x is a $<$-minimal element of $\{y \in X : \varphi$ reflects to $y\}$. Then φ holds in $(V_{x \cap \kappa}(x \cap \kappa, x), \in, R \cap V_{x \cap \kappa}(x \cap \kappa, x))$ but there is no $y \in X \cap \mathcal{P}_{x \cap \kappa} x$ such that φ reflects to y by the minimality of x. Hence x is an element of Y. □

As an immediate corollary, we have the following:

Corollary 6.9. Assume $2^\lambda = \lambda^{<\kappa}$ and $\mathcal{P}_{\kappa \lambda}$ is Π^1_2-indescribable. Then $\{x \in \mathcal{P}_{\kappa \lambda} \mid x \cap \kappa$ is x-ineffable but $\mathcal{P}_{x \cap \kappa} x$ is not Π^1_2-indescribable$\} \in \Pi^*_{\kappa \lambda}$.

Thus, for instance, $\{\alpha < \kappa : \alpha$ is $\alpha^{+\omega}$-ineffable but $\mathcal{P}_{\alpha \alpha^{+\omega}}$ is not Π^1_2-indescribable$\}$ is stationary in κ if $\mathcal{P}_{\kappa \kappa^{+\omega}}$ is Π^1_2-indescribable.

Question 3. In this paper, we frequently used the assumptions that “λ is a strong limit cardinal” or “$2^\lambda = \lambda^{<\kappa}$”. Can we eliminate these assumptions?

Acknowledgments. We would like to thank the referee for many useful comments. The author also thanks Yo Matsumura for his encouragement and support.

References

Toshimichi USUBA
Graduate School of Science
Tohoku University
Sendai, 980-8578, Japan
E-mail: usuba@math.tohoku.ac.jp