On the limit of a monotonous sequence of Cousin's domains

By Joji KAJIWARA

(Received March 27, 1964)

§ 0. Introduction.

In the previous paper [8] it is remarked that the limit of a monotonously decreasing sequence of Cousin-I domains in \(C^n \) is not necessarily a Cousin-I domain for \(n \geq 3 \). In the present paper we shall prove that the limit of a monotonously increasing sequence of Cousin-I domains over a Stein manifold is a Cousin-I domain. Concerning the Cousin-II problem, however, we can prove that the limit of the monotonously increasing sequence of Cousin-II domains over a Stein manifold is a Cousin-II domain, only in case that it is simply connected. The proof is based on the theory of domains of holomorphy due to Docquier-Grauert [5] and the approximation theory due to Behnke [1].

§ 1. Increasing sequence of domains.

Let \(\mathbb{M} \) be a complex manifold. We say that \((D, \Phi) \) is a domain over \(\mathbb{M} \) if \(\Phi \) is a holomorphic mapping of a complex manifold \(D \) into \(\mathbb{M} \) such that \(\Phi \) is locally biholomorphic. A domain \((D, \Phi) \) over \(\mathbb{M} \) is called a covering manifold over \(\mathbb{M} \) if there exists a neighbourhood \(U \) of any point \(x \) of \(\mathbb{M} \) such that \(\Phi \) maps each connected component of \(\Phi^{-1}(U) \) biholomorphically onto \(U \). Let \((D_1, \Phi_1) \) and \((D_2, \Phi_2) \) be domains over \(\mathbb{M} \). We say that \((D_1, \Phi_1) \) is a domain over \((D_2, \Phi_2) \) and write \((D_1, \Phi_1) < (D_2, \Phi_2) \) if there exists a holomorphic mapping \(\tau \) of \(D_1 \) in \(D_2 \) such that \(\Phi_1 = \Phi_2 \circ \tau \). By this relation \(< \) the set of all domains over \(\mathbb{M} \) forms a partially ordered set. We consider a sequence \(\{(D_n, \Phi_n); n = 1, 2, 3, \ldots\} \) of domains over \(\mathbb{M} \) such that \((D_n, \Phi_n) < (D_{n+1}, \Phi_{n+1}) \) for \(n \geq 1 \) and call it a monotonously increasing sequence of domains over \(\mathbb{M} \). Then there exists a holomorphic mapping \(\tau_m^n \) of \(D_n \) in \(D_m \) such that \(\Phi_n = \Phi_m \circ \tau_m^n \) for any \(m \geq n \).

Let \(E \) be the subset of the product set \(\prod_{n=1}^{\infty} D_n \) consisting of all \((x_n) \) which satisfies \(x_n = \tau_n^N(x_N) \) (\(n \geq N \)) for some \(N \). We say that \((x_n) \) and \((y_n) \in E \) are equivalent modulo \(R \) if \(x_n = y_n \) (\(n \geq N \)) for some \(N \). The factor set \(E/R \) is denoted by \(D \). Let \(x_n \) be a point of \(D_n \). We put \(x_m = \tau_m^n(x_n) \) for \(m \geq n \) and
take x_m arbitrarily for $m < n$. If we define that $\tau_n(x_n)$ is the class which has (x_n) as a representative, then we have a mapping τ_n of D_n in D. Let x be an element of D, which is represented by $(x_n) \in E$ such that $x_n = \tau_n^x(x_n)$ $(n \geq N)$. If we put $\Phi(x) = \Phi_n(x_n)$, we have a mapping Φ of D in \mathbb{M} such that $\Phi_n = \Phi \circ \tau_n$ for $n \geq 1$. Let U_N be an open neighbourhood of x_N such that the restriction $\Phi_N|U_N$ of Φ_N to U_N is a biholomorphic mapping of U_N onto a local coordinate neighbourhood of $\Phi_N(x_n)$ in \mathbb{M}. If we put $U_n = \tau_n^x(U_N)$ for $n \geq N$, τ_n^x maps U_N biholomorphically onto U_n. Hence $\tau_n|U_N$ is an injective mapping of U_N onto the subset $V(x)$ of D consisting of all elements of D which have a representative $(x_n) \in E$ such that $x_n = \tau_n^x(x_n)$ $(n \geq N)$ for $x_n \in U_N$. A subset of D containing such $V(x)$ is called a neighbourhood of x. If we define neighbourhoods of D in this way, D is a Hausdorff space. Let μ be a biholomorphic mapping of $\Phi_n(U_N)$ onto an open set Z of a complex Euclidean space. Then $\mu \circ (\Phi|V) = \mu \circ (\tau_n|U_N)^{-1}$ is a homeomorphism of $V(x)$ onto Z. Let x' be another point of D. Then there exist, respectively, neighbourhoods $V(x')$ and U_N, of x' and x_N, D_N, such that Φ_N, maps U_N biholomorphically onto a local coordinate neighbourhood of $\Phi_N(x_N)$ in \mathbb{M} and that Φ_N, maps U_N, homeomorphically onto $V(x')$. Let μ' be a biholomorphic mapping of $\Phi_N(U'_N)$ onto an open set Z' of a complex Euclidean space. Suppose that $V(x) \cap V'(x') \neq \emptyset$. Then $$(\mu \circ (\Phi|V)) \circ (\mu' \circ (\Phi'|V'))^{-1} = \mu \circ (\Phi_N|U_N) \circ (\tau_N^x|U_N)^{-1} \circ (\tau_N^{x'}|U'_N)^{-1} \circ (\Phi_N'|U'_N)^{-1} \circ \mu'^{-1}$$ is a biholomorphic mapping of $\mu'(\Phi'(V \cap V'))$ onto $\mu(\Phi(V \cap V'))$ where $N'' = \max (N, N')$. Hence we can induce a complex structure in D such that τ_n is a holomorphic mapping of D_n in D $(n \geq 1)$ and that Φ is a holomorphic mapping of D in \mathbb{M} which is locally biholomorphic. Therefore (D, Φ) is a domain over \mathbb{M}.

Let (D', Φ') be a domain over \mathbb{M} such that $(D_n, \Phi_n) < (D', \Phi')$ $(n \geq 1)$ with a holomorphic mapping τ_n' of D_n in D' satisfying $\tau_n' = \tau_n' \circ \Phi_n'$ for $m \geq n$. In this case $\{(D_n, \Phi_n); n = 1, 2, 3, \ldots \}$ is called a monotonously increasing sequence over (D', Φ'). Let $(x_n) \in E$ be a representative of $x \in D$ such that $x_n = \tau_n^x(x_n)$ $(n \geq N)$ for $x_n \in D_N$. If we put $\tau'(x) = \tau_n^x(x_n)$, τ' is well-defined and a holomorphic mapping of D in D' such that $\Phi = \Phi' \circ \tau'$. Hence (D, Φ) is a domain over \mathbb{M} such that $\{(D_n, \Phi_n); n = 1, 2, 3, \ldots \}$ is a monotonously increasing sequence over (D, Φ) and that $(D, \Phi) < (D', \Phi')$ for all (D', Φ') over which $\{(D_n, \Phi_n); n = 1, 2, 3, \ldots \}$ is a monotonously increasing sequence. We call this domain (D, Φ) over \mathbb{M} the limit of a monotonously increasing sequence $\{(D_n, \Phi_n); n = 1, 2, 3, \ldots \}$ of domains over \mathbb{M} and denote it by $\lim (D_n, \Phi_n)$. If D_n is a domain in \mathbb{M} for each n, then D coincides with the usual $\lim D_n = \bigcup_{n=1}^{\infty} D_n$.

Lemma 1. Let G be a relatively compact subdomain of the limit (D, Φ) of a monotonously increasing sequence $\{(D_n, \Phi_n); n = 1, 2, 3, \ldots \}$ of domains over
a complex manifold \mathcal{M}. Then there exist an integer m and a relatively compact subdomain G_m of D_m such that τ_m maps G_m biholomorphically onto G.

Proof. Let $E_n \subset D_n$ be a relatively compact subdomain of D_n such that $\tau_n^m(E_n) \subset E_n$ and $\overline{C} \subset \bigcup_{n=1}^{\infty} \tau_n(E_n)$ for $m \geq n \geq 1$. Since $\{\tau_n(E_n); n = 1, 2, 3, \ldots\}$ is an open covering of a compact set \overline{C}, there exists an integer n such that $\overline{C} \subset \tau_n(\overline{E_n})$. We shall prove that τ_m maps $K_m = \tau_m(E_n)$ injectively onto D for sufficiently large m. If this is not true, there exist sequences $\{y_v; v = n, n+1, n+2, \ldots\}$ and $\{x_v'; v = n, n+1, n+2, \ldots\}$ of points y_v in D and x_v' in $\overline{E_n}$ such that $\tau_v'(x_v') \neq \tau_v'(x_v'')$ and $y_v = \tau_n(x_v') = \tau_n(x_v'')$. Since $\overline{E_n}$ and $\tau_n(\overline{E_n})$ are compact, there exists a subsequence $\{v_v\}$ of $\{n, n+1, n+2, \ldots\}$ such that $x_v' \to x' \in \overline{E_n}$ and $x_v'' \to x'' \in \overline{E_n}$ as $v \to \infty$. Since $y_v = \tau_n(x_v') = \tau_n(x_v'')$, we have $y_v = \tau_n(x_v') = \tau_n(x_v'')$. Hence there exists an integer l such that $\tau_l(x') = \tau_l(x'')$. Therefore there exist neighbourhoods U' and U'' of x' and x'' such that τ_l maps U' and U'' biholomorphically onto $U_l = \tau_l(U') = \tau_l(U'')$ and that τ_l maps U_l biholomorphically onto $\tau_l(U)$. Since $x_v' \to x'$ and $x_v'' \to x''$ as $v \to \infty$, there exists an integer μ such that $x_v' \in U'$, $x_v'' \in U''$ and $\mu > l$. Therefore we have $\tau_v'(x_v') = \tau_v'(x_v'')$. Hence we have $\tau_v''(x_v') = \tau_v''(x_v'')$. But this is a contradiction. If we put $G_m = \tau_m(G) \cap K_m$, we have our lemma.

§ 2. Domain of holomorphy.

Let $\{(D_i, \Phi_i); i \in I\}$ be a set of domains over \mathcal{M}. We denote by D the set of all (x_i) such that a neighbourhood U of a point x in \mathcal{M} and a neighbourhood U_i of x_i in D_i for each i satisfy $x = \Phi_i(x_i)$ and $U = \Phi_i(U_i)$. We can naturally induce a complex structure in D such that the canonical mapping λ_i of D in D_i is holomorphic for each i and the mapping Φ defined by $\Phi = \Phi_i \circ \lambda_i$ is a mapping of D in \mathcal{M} which is locally biholomorphic. Hence (D, Φ) is a domain over \mathcal{M}. (D, Φ) is called the intersection of domains (D_i, Φ_i) $(i \in I)$ and denoted by $\bigcap_{i \in I} (D_i, \Phi_i)$. If each D_i is a subdomain of \mathcal{M}, then D coincides with the open kernel of the usual intersection $\bigcap_{i \in I} D_i$.

Let (X, Φ) be a domain over \mathcal{M} and f be a holomorphic function in X. A domain (X', Φ') over \mathcal{M} is called a domain of holomorphic prolongation of f if there exist a holomorphic function f' in X' and a holomorphic mapping τ of X in X' such that $\Phi = \Phi' \circ \tau$ and $f = f' \circ \tau$. In this case it holds that $(X, \Phi) \prec (X', \Phi')$. f' is called a holomorphic prolongation of f over (X', Φ'). Consider a fixed domain (X, Φ) over \mathcal{M} and a holomorphic function f in X. A domain $(\tilde{X}_f, \tilde{\Phi}_f)$ is called the domain of maximal holomorphic prolongation of f if the following conditions are satisfied:

(i) There exists a holomorphic function \tilde{f} in \tilde{X}_f which is a holomorphic
prolongation of \(f \) over \((\tilde{X}_f, \tilde{\Phi}_f)\).

(ii) If \(f' \) is a holomorphic prolongation of \(f \) over a domain \((X', \Phi')\) over \(\mathcal{M}\), then \(\tilde{f} \) is a holomorphic prolongation of \(f' \) over \((\tilde{X}_f, \tilde{\Phi}_f)\).

A domain over \(\mathcal{M}\) is called a domain of holomorphy if it is the domain of maximal holomorphic prolongation of a holomorphic function in a domain over \(\mathcal{M}\). Due to Cartan [3] (exposé 7) there exists such domain \((\tilde{X}_f, \tilde{\Phi}_f)\) for any holomorphic function \(f \) in a domain \((X, \Phi)\) over \(\mathcal{M}\). If \(\mathcal{M}\) is a Stein manifold, a domain of holomorphy over \(\mathcal{M}\) is holomorphically convex from Docquier-Grauert [5].

Conversely, suppose that \((X, \Phi)\) is a holomorphically convex domain over a Stein manifold \(\mathcal{M}\). We can construct a holomorphic function \(f \) in \(X \) by using Bochner-Martin's method [2] such that \(f \) is unbounded at each boundary point of \((X, \Phi)\). Since the holomorphically convex domain \((X, \Phi)\) over \(\mathcal{M}\) is a Stein manifold (see Grauert [7]), \(X \) is holomorphically separable, that is, there exists a holomorphic function in \(X \) which takes different values at two given different points in \(X \). Let \(A = \{x_i; i = 1, 2, 3, \ldots\} \) be a dense subset of \(X \) such that \(\Phi^{-1}\{x_i\} \subset A \) for any \(i \). There exists a holomorphic function \(f_{ij} = f_{ij} \) in \(X \) such that \(f_{ij}(x_i) \neq f_{ij}(x_j) \) for \(i \neq j \). If we take a suitable double sequence \(\{a_{ij}; i, j = 1, 2, 3, \ldots\} \) of complex numbers, \(g = \sum_{i<j} a_{ij} f_{ij} \) converges absolutely and uniformly in any compact subset of \(X \) and \(g(x_i) \neq g(x_j) \) for any \(i \neq j \). Then, for suitable complex numbers \(a \) and \(b \), \(h = af + bg \) is a holomorphic function in \(X \) which is unbounded at each boundary point of \((X, \Phi)\) and satisfies \(h(x_i) \neq h(x_j) \) for any \(i \neq j \). \((X, \Phi)\) is the domain of maximal holomorphic prolongation of \(h \) and is a domain of holomorphy.

Hence we obtained

Lemma 2. A domain \((X, \Phi)\) over a Stein manifold \(\mathcal{M}\) is holomorphically convex, if and only if \((X, \Phi)\) is a domain of holomorphy.

Hereafter we shall denote a Stein manifold by \(\mathcal{M}\). Let \((X, \Phi)\) be a domain over \(\mathcal{M}\) and \(O_X\) be the set of all holomorphic functions in \(X \). For any \(f \in O_X \) we denote by \((\tilde{X}_f, \tilde{\Phi}_f)\) the domain of maximal holomorphic prolongation of \(f \). We denote by \((\tilde{X}, \tilde{\Phi})\) the intersection of \((\tilde{X}_f, \tilde{\Phi}_f)\) for all \(f \in O_X \). \((\tilde{X}, \tilde{\Phi})\) can be characterized by the following properties:

(i) For any \(f \in O_X \), there exists a holomorphic prolongation of \(f \) over \((\tilde{X}, \tilde{\Phi})\).

(ii) If a domain \((X', \Phi')\) has the above property, then \((X', \Phi') < (\tilde{X}, \tilde{\Phi})\).

\((\tilde{X}, \tilde{\Phi})\) is called the envelope of holomorphy of a domain \((X, \Phi)\).

Lemma 3. The envelope of holomorphy \((\tilde{X}, \tilde{\Phi})\) of a domain \((X, \Phi)\) over a Stein manifold \(\mathcal{M}\) is a domain of holomorphy.

Proof. Let \(O_X\) be the set of all holomorphic functions in \(X \) and \((\tilde{X}_f, \tilde{\Phi}_f)\) be the domain of maximal holomorphic prolongation of \(f \in O_X \). We consider
an open covering \(\{ V_i ; i \in I \} \) of \(\mathcal{M} \) with the following properties:

There exists a holomorphic mapping \(\mu_i \) of \(V_i \) onto a domain of holomorphy \(W_i \) of a complex Euclidean space. We put \(U_i = \phi^{-1}(V_i) \) for any \(i \in I \). Then \((U_i, \mu_i \circ \phi_i | U_i) \) is the intersection of holomorphically convex open sets \((\phi_f^{-1}(V_i), \mu_i \circ \phi_f | \phi_f^{-1}(V_i)) \) over the complex Euclidean space for all \(f \in \mathcal{O}_X \). Therefore \((U_i, \mu_i \circ \phi_i | U_i) \) is holomorphically convex by Cartan-Thullen's results \([4]\). Hence \((\tilde{X}, \tilde{\phi}) \) is in the sense of Docquier-Grauert \([5]\). Therefore \((\tilde{X}, \tilde{\phi}) \) is holomorphically convex and is a domain of holomorphy from Lemma 2.

Lemma 4. Let \((D_1, \Phi_1) < (D_2, \Phi_2) \) be domains over a Stein manifold \(\mathcal{M} \) and \(\tau \) be a holomorphic mapping of \(D_1 \) in \(D_2 \) with \(\Phi_1 = \Phi_2 \circ \tau \). Let \((D_1, \Phi_1) \) and \((D_2, \Phi_2) \) be, respectively, the envelopes of holomorphy of \((D_1, \Phi_1) \) and \((D_2, \Phi_2) \). Let \(\lambda_1 \) and \(\lambda_2 \) be, respectively, the canonical mapping of \(D_1 \) in \(\tilde{D}_1 \) and that of \(D_2 \) in \(\tilde{D}_2 \). Then there exists a holomorphic mapping \(\tilde{\tau} \) of \(\tilde{D}_1 \) in \(\tilde{D}_2 \) such that \(\lambda_2 \circ \tau = \tilde{\tau} \circ \lambda_1 \).

Proof. By Remmert's result \([9]\) there exists a biholomorphic mapping \(\mu \) of \(\tilde{D}_2 \) onto a regular analytic set \(A \) in \(C^a \) as \(\tilde{D}_2 \) is a Stein manifold. Then \(\mu \circ \lambda_a \circ \tau \) is a holomorphic mapping of \(D_1 \) in \(C^a \). Since \((\tilde{D}_1, \tilde{\Phi}_1) \) is the envelope of holomorphy of \((D_1, \Phi_1) \), there exists a holomorphic mapping \(\phi \) of \(\tilde{D}_1 \) in \(C^a \) such that \(\mu \circ \lambda_a \circ \tau = \phi \circ \lambda_1 \). We shall prove that \(\phi(\tilde{D}_1) \subseteq A \). Suppose that \(\phi(x) \in A \) for \(x \in D_1 \). Let \(\lambda_1 = \phi \circ \lambda_a \circ \tau \). We shall prove that \(\phi(\tilde{D}_1) \subseteq A \). Suppose that \(\phi(x(t)) \in A \) for some \(0 \leq t \leq 1 \). Since \(\phi \) is holomorphic in \(\tilde{D}_1 \), there exist \(f_1, f_2, \ldots \) and \(f_s \) in \(C^a \) such that \(\forall x \in D_1 \), \(f_i(x(t)) = 0 \) for some \(1 \leq i \leq s \). Then \(\phi(\tilde{D}_1) \subseteq A \). Hence we have \(\phi(\tilde{D}_1) \subseteq A \). Therefore \(\phi = \mu \circ \lambda_a \circ \tau \) is a holomorphic mapping of \(\tilde{D}_1 \) in \(\tilde{D}_2 \) such that \(\lambda_a \circ \tau = \tilde{\tau} \circ \lambda_1 \). Since \(\tilde{\Phi}_1 \circ \lambda_1 = \tilde{\Phi}_2 \circ \tilde{\tau} \circ \lambda_1 \), we have \(\tilde{\Phi}_1 = \tilde{\Phi}_2 \circ \tilde{\tau} \).

Lemma 5. Let \(\{(D_n, \Phi_n) ; n = 1, 2, 3, \ldots \} \) be a monotonously increasing sequence of domains of holomorphy over a Stein manifold \(\mathcal{M} \). Then its limit \((D, \Phi) \) is also a domain of holomorphy.

Proof. It suffices to prove that \(D \) is \(p_\alpha \)-convex in the sense of Docquier-Grauert \([5]\). We put \(B(a) = \{ z ; |z_1| \leq a, \ldots, |z_n| < a \} \) and \(\delta B(a) = \{ z ; |z_1| = 1, |z_2| < a, \ldots, |z_n| < a \} \) where \(\alpha \) is the dimension of \(\mathcal{M} \). Let \(\varphi \) be a biholomorphic mapping of \(B = B(1) \) in \(D \) such that \(\varphi(\delta B) \subseteq D \). Let \(W \) be a relatively compact open neighbourhood of \(\varphi(\delta B \cup \overline{B(1/2)}) \). From Lemma 1
there exist an integer \(m_0 \) and a relatively compact open set \(W_0 \) in \(D_{m_0} \) such that \(\tau_{m_0} \) maps \(W_0 \) biholomorphically onto \(W \). For any \(1/2 < a < 1 \) there exists \(\varepsilon > 0 \) such that \(\varphi(G(a)) \subseteq W_0 \) for \(G(a) = \{ z; 1-\varepsilon < |z_1| < 1+\varepsilon, |z_2| < a, \ldots, |z_n| < a \} \cup \{ z; |z_1| < 1+\varepsilon, |z_2| < 1/2, \ldots, |z_n| < 1/2 \} \). \(\eta = (\tau_{m_0}W)^{-1} \circ \varphi \) maps \(G(a) \) biholomorphically in \(D_{m_0} \). As in the proof of Lemma 4 there exists a holomorphic mapping \(\tilde{\eta}_a \) of \(\overline{G(a)} = \{ z; |z_1| < 1+\varepsilon, |z_2| < a, \ldots, |z_n| < a \} \cup \{ z; |z_1| < 1+s, |z_2| < 1/2, \ldots, |z_n| < 1/2 \} \) in \(D_{m_0} \) such that \(\tilde{\eta}_a = \eta_a \) in \(G(a) \). From the theorem of identity we have \(\varphi = \tau_{m_0} \circ \tilde{\eta}_a \) in \(\overline{G(a)} \). Since \(\varphi \) is biholomorphic, \(\tilde{\eta}_a \) is also biholomorphic. Thus we have proved that there exists a biholomorphic mapping \(\tilde{\eta} \) of \(B \) in \(D_{m_0} \) such that \(\varphi = \tau_{m_0} \circ \tilde{\eta} \) and \(\tilde{\eta}(B) \subseteq D_{m_0} \). Since \(D_{m_0} \) is \(p_\theta \)-convex, we have \(\tilde{\eta}(B) \subseteq D_{m_0} \). Therefore we have \(\varphi(B) = \tau_{m_0}(\tilde{\eta}(B)) \subseteq D \). Hence \(D \) is \(p_\theta \)-convex.

§ 3. Cohomology of an increasing sequence of domains.

Let \(\{ (D_n, \Phi_n); n = 1, 2, 3, \ldots \} \) be a monotonously increasing sequence of domains over \(\mathbb{R} \), \((D, \Phi) \) be its limit and \(\tau_n \) and \(\tau_m \) be, respectively, the canonical mapping of \(D_n \) in \(D_m \) (\(m \geq n \)) and that of \(D_n \) in \(D \) (\(n \geq 1 \)). Then there exists a canonical homomorphism \(\pi^m_n \) of \(H^1(D_m, \mathcal{O}) \) in \(H^1(D_n, \mathcal{O}) \) for \(m \geq n \) such that \(\pi^l_n = \pi^m_n \circ \pi^m_n \) for \(l \geq m \geq n \) where \(\mathcal{O} \) is the sheaf of all germs of holomorphic functions. Hence \(\{ H^1(D_n, \mathcal{O}); \pi^m_n \} \) is an inverse system of \(\mathbb{C} \)-module over a directed set \(\{ 1, 2, 3, \ldots \} \). We consider its inverse limit and denote it by \(\lim H^1(D_n, \mathcal{O}) \). The canonical homomorphisms of \(H^1(D, \mathcal{O}) \) in \(H^1(D_n, \mathcal{O}) \) induce the canonical homomorphism of \(H^1(D, \mathcal{O}) \) in \(\lim H^1(D_n, \mathcal{O}) \). Under these assumptions we have

Lemma 6. The canonical homomorphism of \(H^1(D, \mathcal{O}) \) in \(\lim H^1(D_n, \mathcal{O}) \) is injective.

Proof. Since the canonical homomorphism of \(H^1(V, \mathcal{F}) \) in \(H^1(X, \mathcal{F}) \) is injective for any sheaf \(\mathcal{F} \) of abelian groups in a topological space \(X \) and for any open covering \(\mathcal{U} \) of \(X \), it suffices to prove the following statement:

If \(\{ f_{ij} \} \) is an element of \(Z^1(\mathcal{U}, \mathcal{F}) \) (cocycle) for any open covering \(\mathcal{V} = \{ V_i; i \in I \} \) of \(D \) such that \(\{ f_{ij} \circ \tau_n \} \subseteq B^1(\tau_n^{-1}(\mathcal{V}); \mathcal{F}) \) (coboundary) for any \(n \geq 1 \) where \(\tau_n^{-1}(\mathcal{V}) = \{ \tau_n^{-1}(V_i); i \in I \} \), then \(\{ f_{ij} \} \subseteq B^1(\mathcal{V}, \mathcal{F}) \).

Let \((\tilde{D}_n, \tilde{\Phi}_n) \) and \((\tilde{D}, \tilde{\Phi}) \) be, respectively, the envelope of holomorphy of \((D_n, \Phi_n) \) (\(n = 1, 2, 3, \ldots \)) and \((D, \Phi) \). From Lemma 4 \(\{ (\tilde{D}_n, \tilde{\Phi}_n); n = 1, 2, 3, \ldots \} \) is a monotonously increasing sequence of domains over \((D, \Phi) \). Hence from Lemma 5 \(\lim (\tilde{D}_n, \tilde{\Phi}_n) \) is a domain of holomorphy satisfying \((D, \Phi) < \lim (\tilde{D}_n, \tilde{\Phi}_n) \) < \((\tilde{D}, \tilde{\Phi}) \). Since \((\tilde{D}, \tilde{\Phi}) \) is the envelope of holomorphy of \((D, \Phi) \), we have \((\tilde{D}, \tilde{\Phi}) = \lim (\tilde{D}_n, \tilde{\Phi}_n) \). We denote by \(\tau_n, \tau_n^m, \tau_n^m, \lambda_n, \lambda \) and \(\lambda \) the canonical mapping of \(D_n \) in \(D \), that of \(D_n \) in \(D_m \), that of \(D_n \) in \(\tilde{D} \), that of \(\tilde{D}_n \) in \(\tilde{D}_m \).
that of D_n in \bar{D}_n and that of D in \bar{D}, respectively. Then the commutativity holds in the following diagram:

\[\begin{array}{ccc}
D_n & \xrightarrow{\tau_m^n} & D_m \\
\downarrow{\lambda_n} & & \downarrow{\lambda_m} \\
\bar{D}_n & \xrightarrow{\bar{\tau}_m^n} & \bar{D}_m
\end{array} \]

Let \(\{Q_n; n = 1, 2, 3, \ldots\} \) be a sequence of relatively compact open subsets of D such that $Q_n \subseteq Q_{n+1}$ (\(n \geq 1 \)) and $D = \bigcup_{n=1}^{\infty} Q_n$. From Lemmas 2 and 3 \bar{D} is holomorphically convex. There exists a sequence of analytic polyhedra P_n defined by holomorphic functions in \bar{D} such that $P_n \subseteq P_{n+1}$, $\lambda(Q_n) \subseteq P_n$ for $n \geq 1$ and $\bar{D} = \bigcup_{n=1}^{\infty} P_n$. Since $(D, \Phi) = \lim (D_n, \Phi_n)$ and $(\bar{D}, \bar{\Phi}) = \lim (\bar{D}_n, \bar{\Phi}_n)$, there exists a monotonously increasing sequence \(\{\nu_n; n = 1, 2, 3, \ldots\} \) of integers such that τ_{ν_n} and $\bar{\tau}_{\nu_n}$ map, respectively, relatively compact open subsets of D_n and \bar{D}_n, biholomorphically onto Q_{ν_n} of D and P_{ν_n} of \bar{D} for $n \geq 1$ and further that

\[\tau_{\nu_{n+1}}(Q_{\nu_n}) \subseteq Q_{\nu_{n+1}}, \quad \tau_{\nu_{n+1}}(P_{\nu_n}) \subseteq P_{\nu_{n+1}}, \quad \lambda_{\nu_n}(Q_{\nu_n}) \subseteq \bar{P}_{\nu_n} \quad (n \geq 1). \]

Without losing generality, we may suppose that $\nu_n = n$.

Since \(\{f_{ij} \circ \tau_n\} \in B(\tau_n^{-1}(\mathbb{V}), \mathcal{C}) \), there exists $\{f^n\} \in C(\tau_n^{-1}(\mathbb{V}), \mathcal{C})$ such that $f_{ij} \circ \tau_n = f^n \circ \tau_{n+1}^{-1}$ in $\tau_n^{-1}(V_j) \cap \tau_{n+1}^{-1}(V_j)$. If we put $f^n = f^n \circ \tau_{n+1}^{-1}$ in $\tau_n^{-1}(V_j)$, then, f^n is well-defined and holomorphic in D_n. Since $(\bar{D}_n, \bar{\Phi}_n)$ is the envelope of holomorphy of (D_n, Φ_n), there exists a holomorphic prolongation f^n of f^n over $(\bar{D}_n, \bar{\Phi}_n)$. There holds $f^n = f^n \circ \lambda_n$ for $n \geq 1$. Since $f^n \circ \lambda_n^{-1}(P_n)$ is a holomorphic function in P_n, there exists a holomorphic function h^n in \bar{D} (\(n \geq 1 \)) which satisfies $|f^n \circ \lambda_n^{-1}(P_n) - h^n| < 2^{-n}$ in P_{n-1} for $n \geq 2$ from Behnke’s approximation theory [1]. If we put $h^n = h^n \circ \lambda$, the holomorphic function h^n in D satisfies $|f^n \circ \lambda_n^{-1}(Q_n) - h^n| < 2^{-n}$ in Q_{n-1} for $n \geq 2$. We consider holomorphic functions in D defined by $g^1 = 0$, $g^n = h^1 + h^2 + \cdots + h^{n-1}$ for $n \geq 2$. Then the coboundary of $\{f^n \circ \lambda_n^{-1}(Q_n) - g^n\} \in C(\mathbb{V} \cap Q_n, \mathcal{C})$, where $\mathbb{V} \cap Q_n = \{V_i \cap Q_n; i \in I\}$, is $\{f_{ij} \circ Q_n\} \in Z(\mathbb{V} \cap Q_n, \mathcal{C})$. There holds

\[(f^n \circ \lambda_n^{-1}(Q_n) - g^n) - (f^{n+1} \circ \lambda_{n+1}^{-1}(Q_{n+1}) - g^{n+1}) = f^n \circ \lambda_n^{-1}(Q_n) - h^n \]

in any $V_i \cap Q_n$. Hence $f^n \circ \lambda_n^{-1}(Q_n) - g^n$ converges uniformly in any compact subset of V_i to a holomorphic function f_i in V_i. Since

\[f_{ij} = (f^n \circ \lambda_n^{-1}(Q_n) - g^n) - (f^n \circ \lambda_n^{-1}(Q_n) - g^n) \]

A collection \(\mathcal{E} = \{(m_i, V_i) ; i \in I \} \) of pairs of an open subset \(V_i \) of a complex manifold \(X \) and a meromorphic function \(m_i \) in \(V_i \) is called a Cousin-I (or Cousin-II) distribution in \(X \) if \(m_i - m_j \in H^0(V_i \cap V_j, \mathcal{O}) \) (or \(m_i/m_j \in H^0(V_i \cap V_j, \mathcal{O}^*) \)) for any \(V_i \cap V_j \neq \emptyset \) and \(\{ V_i ; i \in I \} \) is an open covering of \(X \) where \(\mathcal{O}^* \) is the sheaf of all germs of holomorphic mapping in \(\hat{C} = GL(1, C) \). A meromorphic function \(m \) in \(X \) is called a solution of the Cousin-I (or Cousin-II) distribution \(\mathcal{E} \) if \(m - m_i \in H^0(V_i, \mathcal{O}) \) (or \(m/m_i \in H^0(V_i, \mathcal{O}^*) \)) for any \(i \in I \). A meromorphic function \(M \) in the universal covering manifold \((X, \pi)\) of \(X \) is called a multiform solution of \(\mathcal{E} \) if \(M \) is the solution of the Cousin distribution \(\{(m_1 \circ \tau^n, \pi^{-1}(V_i)) ; i \in I \} \). If any Cousin-I (or Cousin-II) distribution in \(X \) has a solution, \(X \) is called a Cousin-I (or Cousin-II) manifold. If any Cousin-I (or Cousin-II) distribution in \(X \) has a multiform solution, \(X \) is called a multiform Cousin-I (or Cousin-II) manifold. A complex manifold \(X \) with the vanishing fundamental group \(\pi_1(X) \) is called simply connected.

PROPOSITION 1. The limit \((D, \Phi) \) of a monotonously increasing sequence \(\{(D_n, \Phi_n) ; n = 1, 2, 3, \ldots \} \) of Cousin-I domains over a Stein manifold \(\mathcal{M} \) is a Cousin-I domain. However, for any \(\alpha \geq 3 \) there exists an example of the limit of a monotonously decreasing sequence of Cousin-I domains in \(C^\alpha \) which is not even a multiform Cousin-I domain.

PROOF. Let \(\mathcal{E} = \{(m_i, V_i) ; i \in I \} \) be a Cousin-I distribution in \(D \). Then \(\{(m_i \circ \tau^n, \tau^{-1}_n(V_i)) ; i \in I \} \) is a Cousin-I distribution in \(D_n \). If we put \(f_{ij} = m_i - m_j \in H^0(V_i \cap V_j, \mathcal{O}) \) and \(f_{ij}^n = m_i \circ \tau^n - m_j \circ \tau^n \in H^0(\tau^{-1}_n(V_i \cap V_j), \mathcal{O}) \), then \(\{f_{ij}^n\} \in Z^1(\tau^{-1}_n(\mathcal{O}_\mathcal{M})), \mathcal{O}) \) is the canonical image of \(\{f_{ij}\} \in Z^1(\mathcal{O}_\mathcal{M}), \mathcal{O}) \) where \(\mathcal{O}_\mathcal{M} = \{V_i; i \in I\} \) and \(\tau^{-1}_n(\mathcal{O}_\mathcal{M}) = \{\tau^{-1}_n(V_i); i \in I\} \). Since \(D_n \) is a Cousin-I domain for any \(n \), \(\{f_{ij}^n\} \in B^1(\tau^{-1}_n(\mathcal{O}_\mathcal{M}), \mathcal{O}) \) for any \(n \). Hence there exists a holomorphic function \(f_i \) in \(V_i \) for any \(i \in I \) such that \(f_{ij} = f_i - f_j \) in \(V_i \cap V_j \) from Lemma 6. If we put \(m = m_i - f_i \) in \(V_i \), \(m \) is well-defined and a solution of \(\mathcal{E} \).

As for the latter half, we put

\[D = \{z; |z_1| < 1, |z_2| < 1, \ldots, |z_n| < 1\} - \{z; z_1 = z_2 = 0\} \]

and

\[D_p = \{z; |z_1| < (p+1)/p, |z_2| < (p+1)/p, \ldots, |z_n| < (p+1)/p\} \]

\[- \mathcal{D} \cap \{z; z_1 = z_2 = 0\} \]

for \(p = 1, 2, 3, \ldots \). As shown in the previous paper [8], \(D \) is the limit (precisely the open kernel of \(\bigcap_{p=1}^\infty D_p \) of the monotonously decreasing sequence of Cousin-I domains in \(C^\alpha \)).
domains D_p in C^n but is not a Cousin-I domain. Since D is simply connected, D is not even a multiform Cousin-I domain.

Let (D, Φ) be a domain over a Stein manifold \mathfrak{M} and (D^*, λ^*) be the universal covering manifold of D. If we put $\Phi^* = \Phi \circ \lambda^*$, (D^*, Φ^*) is a domain over \mathfrak{M}. If (D, Φ) is a domain of holomorphy, it is p_r-convex in the sense of Docquier-Grauert [5]. Hence (D^*, Φ^*) is p_r-convex and is a domain of holomorphy. This follows also from the result of Stein [11] that a covering manifold over a Stein manifold is a Stein manifold.

Let $\{(D_n, \Phi_n) ; n = 1, 2, 3, \cdots \}$ be a monotonously increasing sequence of domains over \mathfrak{M}, (D, Φ) be its limit, $(\check{D}_n, \check{\Phi}_n)$ and $(\check{D}, \check{\Phi})$ be, respectively, the envelope of holomorphy of (D_n, Φ_n) and (D, Φ). Let (D^*_n, λ^*_n), (D^*, λ^*), $(\check{D}^*_n, \check{\lambda}^*_n)$ and $(\check{D}^*, \check{\lambda}^*)$ be, respectively, the universal covering manifolds of D_n, D, \check{D}_n and \check{D} for any n. If we put

$$\Phi^*_n = \Phi_n \circ \lambda^*_n, \quad \Phi^* = \Phi \circ \lambda^*, \quad \check{\Phi}^*_n = \check{\Phi}_n \circ \check{\lambda}^*_n, \quad \check{\Phi}^* = \check{\Phi} \circ \check{\lambda}^*,$$

then the commutativity holds in the three-dimensional diagram obtained by adding holomorphic mappings

$$D_n \xrightarrow{\tau_{mn}} D_m \xrightarrow{\tau_{nm}} D^*$$

to the following diagram and identifying the same symbols in it where each holomorphic mapping is the canonical one $(m \geq n)$:

From Lemma 1 (D^*, Φ^*) and $(\check{D}^*, \check{\Phi}^*)$ are, respectively, the limits of monotonously increasing sequences $\{(D^*_n, \Phi^*_n) ; n = 1, 2, 3, \cdots \}$ and $\{ (\check{D}^*_n, \check{\Phi}^*_n) ; n = 1, 2, 3, \cdots \}$. Let $\{P_n ; n = 1, 2, 3, \cdots \}, \{Q_n ; n = 1, 2, 3, \cdots \}, \{R_n ; n = 1, 2, 3, \cdots \}$ and $\{S_n ; n = 1, 2, 3, \cdots \}$ be, respectively, sequences of relatively compact subdomains of $\check{D}, D, \check{D}^*$ and D^* with the following properties:

$$P_n \subset P_{n+1}, \quad Q_n \subset Q_{n+1}, \quad R_n \subset R_{n+1}, \quad S_n \subset S_{n+1},$$

$$\bigcup_{n=1}^{\infty} P_n = \check{D}, \quad \bigcup_{n=1}^{\infty} Q_n = D, \quad \bigcup_{n=1}^{\infty} R_n = \check{D}^*, \quad \bigcup_{n=1}^{\infty} S_n = D^*,$$

$$\lambda(Q_n) \subset P_n, \quad \check{\lambda}(R_n) \subset P_n, \quad \lambda^*(S_n) \subset Q_n, \quad j(S_n) \subset R_n.$$
P_n and Q_n are, respectively, analytic polycylinders defined by holomorphic functions in \bar{D} and \bar{D}^*. There exists a subsequence $\{\nu_n \; ; \; n = 1, 2, 3, \ldots\}$ of $\{1, 2, 3, \ldots\}$ with the following properties:

There exist, respectively, subdomains P'_n, Q'_n, R'_n and S'_n of \bar{D}_{ν_n}, D_{ν_n}, \bar{D}_{ν_n} and $D^*_{\nu_n}$ such that τ_{ν_n}, τ_{ν_n}, $\tau^*_{\nu_n}$ and $\tau^*_{\nu_n}$ map biholomorphically P'_n, Q'_n, R'_n and S'_n onto P_{ν_n}, Q_{ν_n}, R_{ν_n} and S_{ν_n} and that

\[
\lambda_{\nu_n}(Q'_n) \subset P'_n, \quad \lambda^*_{\nu_n}(R'_n) \subset P'_n, \quad \lambda^*_{\nu_n}(S'_n) \subset Q'_n, \quad \lambda_{\nu_n}(S'_n) \subset R'_n,
\]

\[
\tau_{\nu_n+1}(P'_n) \subset P'_{n+1}, \quad \tau^*_{\nu_n+1}(Q'_n) \subset Q'_{n+1}, \quad \tau^*_{\nu_n+1}(R'_n) \subset R'_{n+1}, \quad \tau^*_{\nu_n+1}(S'_n) \subset S'_{n+1}.
\]

We may suppose that $\nu_n = n$. Let $\mathcal{C} = \{(m_i, V_i) \ ; \ i \in I\}$ be a Cousin-II distribution in (D, Φ). We shall suppose that the Cousin-II distribution $\{(m_i \circ \tau_n, \tau_n(V_i)) \ ; \ i \in I\}$ has a solution in D_n for any n. There exists a meromorphic function m^n in D_n such that $m^n/m_i \circ \tau_n \in H^\infty(\tau_n(V_i), \mathbb{C}^*)$ for any $i \in I$. If we put $f^n = m^n/m^{n+1} \circ \tau_n$, then $f^n \in H^\infty(D_n, \mathbb{C}^*)$. Since $(\bar{D}_n, \bar{\Phi}_n)$ is the envelope of holomorphy of (D_n, Φ_n), there exists a holomorphic prolongation \tilde{f}^n of f^n which satisfies $\tilde{f}^n \in H^\infty(\bar{D}_n, \mathbb{C}^*)$ and $f^n = \tilde{f}^n \circ \tilde{\tau}_n$ for any n. Then $\log(\tilde{f}^n \circ \tilde{\tau}_n) \in H^\infty(\bar{D}_n, \mathbb{C})$ for $n \geq 1$. There holds $\log(\tilde{f}^n \circ \tilde{\tau}_n(\bar{\tau}_n(V_{n+1}))) \in H^\infty(\bar{D}_n, \mathbb{C})$ for $n \geq 1$. Since R_n is an analytic polycylinder defined by holomorphic functions in \bar{D}_n, from Behnke's approximation theory [1] there exists a holomorphic function \tilde{h}_n in \bar{D}_n such that

\[
| \log(\tilde{f}^n \circ \tilde{\tau}_n(\bar{\tau}_n(V_{n+1}))) - \tilde{h}_n | < 2^{-n-2} \text{ in } R_{n-1} \text{ for } n \geq 2.
\]

We put $H^n = \exp(\tilde{h}_n \circ \tilde{\tau}_n) \in H^\infty(D_n, \mathbb{C}^*)$. There holds $|f^n \circ \tau_n(\bar{\tau}_n(V_{n+1})) - \lambda^n/(H^n - 1)| < 2^{-n} \text{ in } S_{n-1}$ for $n \geq 2$. We put $G^1 = 1$, $G^n = H^2 \circ H^2 \cdots H^2 \circ H^2 \in H^\infty(D_n, \mathbb{C}^*)$ for $n \geq 2$. Then $M^n = (m^n \circ \tau_n)(G^n)$ is a meromorphic function in S_n. There holds $|\overline{M^n}/M^n - \overline{\lambda^n}/\lambda^n| < 2^{-n} \text{ in } S_{n-1}$. Therefore $\{M^n \; ; \; n = 1, 2, 3, \ldots\}$ converges uniformly to a meromorphic function M in any compact subset of D^*. There holds $M/m_i \circ \lambda^n \in H^\infty(\tau_n(V_i), \mathbb{C}^*)$ for any $i \in I$. Hence M is the solution of the Cousin-II distribution $\{m_i \circ \lambda^n, \lambda^n(\tau_n(V_i)) \ ; \ i \in I\}$ in D^* and is a multiform solution of \mathcal{C}. Therefore we have

\[\text{PROPOSITION 2. The limit of a monotonously increasing sequence of Cousin-II domains over a Stein manifold is a multiform Cousin-II domain.}\]

\[\text{COROLLARY. If the limit of a monotonously increasing sequence of Cousin-II domains over a Stein manifold is simply connected, it is a Cousin-II domain.}\]
References

