On some doubly transitive permutation groups of degree \(n \) and order \(2^{(n-1)n} \)

By Hiroshi KIMURA

(Received Jan. 27, 1969)
(Revised Nov. 22, 1969)

1. Introduction.

Doubly transitive permutation groups of degree \(n \) and order \(2^{(n-1)n} \) were determined by N. Ito ([9]). Some doubly transitive permutation groups of degree \(n \) and order \(4^{(n-1)n} \) were studied in [10].

The object of this paper is to prove the following result.

Theorem. Let \(Q \) be the set of symbols 1, 2, ..., \(n \). Let \(\mathcal{G} \) be a doubly transitive group on \(Q \) of order \(2^{(n-1)n} \) (\(l > 1 \)) not containing a regular normal subgroup and let \(\mathcal{K} \) be the stabilizer of symbols 1 and 2. Assume that \(\mathcal{K} \) is cyclic. Then \(\mathcal{G} \) is isomorphic to one of the groups \(PGL(2, *) \), \(PSL(2, *) \), \(PSU(3, 3^2) \) and \(PSU(3, 5^2) \).

We use the standard notation. \(C_{\mathfrak{x}}(\mathfrak{T}) \) denotes the centralizer of a subset \(\mathfrak{T} \) in a group \(\mathfrak{x} \) and \(N_{\mathfrak{x}}(\mathfrak{T}) \) stands for the normalizer of \(\mathfrak{T} \) in \(\mathfrak{x} \). \(\langle S, T, \ldots \rangle \) denotes the subgroup of \(\mathfrak{x} \) generated by elements \(S, T, \ldots \) of \(\mathfrak{x} \).

2. On the degree of the permutation group \(\mathcal{G} \).

1. Let \(\mathcal{H} \) be the stabilizer of the symbol 1. \(\mathcal{H} \) is of order \(2^l \) and it is generated by a permutation \(K \). Let us denote the unique involution \(K^{2^{l-1}} \) of \(\mathcal{H} \) by \(\tau \). Since \(\mathcal{G} \) is doubly transitive on \(Q \) it contains an involution \(I \) with the cyclic structure \((1 2) \ldots \). Then we have the following decomposition of \(\mathcal{G} \);

\[
\mathcal{G} = \mathcal{H} + \mathcal{H}I\mathcal{H}.
\]

Since \(I \) is contained in \(N_{\mathfrak{g}}(\mathcal{H}) \), it induces an automorphism of \(\mathcal{H} \) and (i) \(K^I = K \) or \(K^I = K\tau \) or (iii) \(K^I = K^{-1} \). (For the case \(l = 2 \), (i) \(K^I = K \) or (iii) \(K^I = K^{-1} \)) If an element \(H^I \mathcal{H} \) of a coset \(\mathcal{H} \mathcal{H} \) of \(\mathcal{H} \) is an involution, then \(IHH^I = (HH^I)^{-1} \) is contained in \(\mathcal{H} \). Hence, in the case (i) the coset \(\mathcal{H}I\mathcal{H} \) contains just two involutions, namely \(H^{I} \mathcal{H} \) and \(H^{I}\tau \mathcal{H} \), in the case (ii) it contains just \(2^{l-1} \) involutions, namely \(H^{I} \mathcal{H} \) for \(\mathcal{K} \in \langle K^2 \rangle \), and in the case

1) This work was supported by The Sakkokai Foundation.
(iii), it contains just 2^n involutions, namely $H^{-1}K' IH$ for $K' \in \mathfrak{S}$. Let $g(2)$ and $h(2)$ denote the numbers of involutions in \mathfrak{S} and \mathfrak{S}, respectively. Then the following equality is obtained:

$$g(2) = h(2) + d(n-1),$$

where $d = 2, 2^2$ and 2^i for cases (i), (ii) and (iii), respectively.

2. For a set \mathfrak{S} of permutations of \mathfrak{G}, the set of all symbols fixed by \mathfrak{S} is denoted by $\mathfrak{S}(\mathfrak{S})$ and we denote the number of symbols in $\mathfrak{S}(\mathfrak{S})$ by $a(T)$. Let K_{st_j} denote the permutation of \mathfrak{S} such that $\alpha(x) = \alpha(K_{st_j}) > \alpha(K_{st_j'})$ and let \mathfrak{S}_1 be the subgroup of \mathfrak{S} generated by K_{st_j}. Then the order of \mathfrak{S}_1 is equal to 2^n. Let \mathfrak{S}_i keep $i (i \geq 2)$ symbols of \mathfrak{S}, say $1, 2, \ldots, i$, unchanged. It is trivial that $N_\mathfrak{S}(\mathfrak{S}_i) = C_\mathfrak{S}(x)$. Put $\mathfrak{S} = \mathfrak{S}(\mathfrak{S}_i) = \{1, 2, \ldots, i\}$. We denote the factor group $N_\mathfrak{S}(\mathfrak{S}_i)/\mathfrak{S}_1$ by \mathfrak{S}_i. By a theorem of Witt ([15, Theorem 9.4]), \mathfrak{S}_i can be considered as a doubly transitive permutation group on \mathfrak{S}. The stabilizer of symbols 1 and 2 in \mathfrak{S} is the cyclic 2-group. Thus the orders of $N(\mathfrak{S}_1)$ and $N(1)$ are equal to $2^i(i-1)$ and 2^{i-1}, respectively. Hence there exist $n(n-1)/i(i-1)$ involutions in \mathfrak{S} each of which is conjugate to T.

At first, let us assume that n is odd. Let $h_*(2)$ be the number of involutions in \mathfrak{S} leaving only the symbol 1 fixed. Then from (2.1) and above argument the following equality is obtained:

$$h*(2)n + n(n-1)/i(i-1) = (n-1)/(i-1) + h*(2) + d(n-1).$$

Since i is less than n, it follows from (2.2) that $h*(2) < d$ and hence $n = i(\beta i - \beta + 1)$, where $\beta = d - h*(2)$. Since n is odd, i must be odd.

Next let us assume that n is even. Let $g*(2)$ be the number of involutions in \mathfrak{S} leaving no symbol of \mathfrak{S} fixed. Then corresponding to (2.2) the following equality is obtained from (2.1):

$$g*(2) + n(n-1)/i(i-1) = (n-1)/(i-1) + d(n-1).$$

It is easily proved that $g*(2)$ is a multiple of $n-1$ (see [8] or [9]). It follows from (2.3) that $g*(2) < d(n-1)$. Thus we have $n = i(\beta i - \beta + 1)$, where $\beta = d - g*(2)/(n-1)$. Since n is even, i must be even.

3. We prove the theorem by induction on the degree n. Let $SL(2, 8)$ denote the two-dimensional special linear group over the field $GF(8)$ of eight elements, and let σ be the automorphism of $GF(8)$ of order three such that $\sigma(x) = x^2$ for every element x of $GF(8)$. Then σ can be considered in a usual way an automorphism of $SL(2, 8)$. Let $SL^*(2, 8)$ be the splitting extension of $SL(2, 8)$ by the group $\langle \sigma \rangle$. Then $SL^*(2, 8)$ has doubly transitive permutation representation on the set of Sylow 3-subgroups and its degree is equal to 28. The stabilizer of two symbols leaves four Sylow 3-subgroups fixed and every
involution is conjugate (see [8]).

Theorem 1 (N. Ito, [8]). Let \mathfrak{G} be a doubly transitive permutation group on Ω of order $2n(n-1)$ not containing a regular normal subgroup. Then \mathfrak{G} is isomorphic to either $\text{PSL}(2, 5)$ or $\text{SL}^*(2, 8)$.

If \mathfrak{G} contains a regular normal subgroup, then its degree is equal to a power of a prime number. Thus, by Theorem 1, if $l=1$, then n is equal to 6, 28 or a power of a prime number.

3. The case n is odd.

1. Since $n = i(\alpha-i+1)$ is odd, i must be odd. The group $\mathfrak{G}_i = N_\mathfrak{a}(\mathfrak{s}_i)/\mathfrak{s}_i$ is a doubly transitive permutation group on \mathfrak{s}_i and the stabilizer of symbols 1 and 2 is the subgroup \mathfrak{s}_i of order 2^{i-1}. By the inductive hypothesis, \mathfrak{G}_i contains a regular normal subgroup and, in particular, i is equal to a power of an odd prime number, say p^m. Let \mathfrak{B}_1 be a Sylow p-subgroup of $N_\mathfrak{a}(\mathfrak{s}_i)$ of order $i = p^m$. Since $\mathfrak{s}_1/\mathfrak{s}_i$ is a regular normal subgroup of \mathfrak{G}_i, \mathfrak{B}_1 is elementary abelian and normal in $N_\mathfrak{a}(\mathfrak{s}_i)$. Let \mathfrak{B} denote the subgroup $\mathfrak{B}_1 \cap N_\mathfrak{a}(\mathfrak{s}_i)$. Then the order of \mathfrak{B} is equal to $2^i(p^m-1)$.

2. Case $n = i^2 = p^m$. It can be proved in the same way as in [9, Case A] that there exists no group satisfying the conditions of the theorem in this case.

3. Case $n = p^m(\beta p^m - \beta + 1)$ with $\beta > 1$ and $\beta, \beta - 1 \equiv 0 \pmod{p}$. In this case it can be proved in the same way as in [10, §2.5] that there is no group satisfying the conditions of the theorem in this case.

4. Case $n = p^m(\beta p^m - \beta + 1)$ with $\beta > 1$ and $\beta \equiv 0 \pmod{p}$. Since $\beta \geq 3, d$ must be greater than 2 and hence $\langle K, I \rangle$ is dihedral or semi-dihedral.

Consider the cyclic structure of K and it can be seen that $n - i = \beta p^m(p^m-1)$ is divisible by 2^i. Set $p = 2^q + 1$, where $q(> 0)$ is odd. Since $2^i \geq \beta \geq p$, β is not divisible by 2^{i-k} and therefore p^m-1 must be divisible by 2^{i-k}. Hence m is even.

At first assume that the order of $N_\mathfrak{a}(\mathfrak{S})$ is divisible by 2^{i+2}. Since $N_\mathfrak{a}(\mathfrak{S})/\mathfrak{S}$ is a complete Frobenius group on $\mathfrak{S}(\mathfrak{S})$, any Sylow subgroup of a complement $\mathfrak{S} \cap N_\mathfrak{a}(\mathfrak{S})/\mathfrak{S}$ is cyclic or quaternion (ordinary or generalized). Hence there exists a subgroup \mathfrak{S} of $N_\mathfrak{a}(\mathfrak{S})$ such that $\mathfrak{S} \supseteq \langle I, K \rangle$ and $\mathfrak{S}/\mathfrak{S}$ is a cyclic group of order 4. \mathfrak{S} contains S such that $S^2 = I(\mathfrak{S})$, S induces an automorphism of \mathfrak{S} of order 4 and S^2 and I induce the same automorphism. But it is easily seen that, for any automorphism ζ of \mathfrak{S} of order 4, $K^{\zeta} = \tau K$. This is a contradiction since $\langle K, I \rangle$ is dihedral or semi-dihedral.

Next assume that the order of $N_\mathfrak{a}(\mathfrak{S})$ is not divisible by 2^{i+2}. Let \mathfrak{S} be a Sylow 2-subgroup of $N_\mathfrak{a}(\mathfrak{s}_i)$ containing $\langle I, K \rangle$. Since m is even, the order
of \mathfrak{S} is greater than 2^{l+2}. By the assumption of the order of $N_6(\mathfrak{R})$, $\mathfrak{S} \cap N_6(\mathfrak{R}) = \langle K, I \rangle$ is a Sylow 2-subgroup of $N_6(\mathfrak{R})$. Therefore $N_6(\langle K, I \rangle)$ is greater than $N_6(\mathfrak{R})$. Let S (≠ 1) be a permutation of $N_6(\langle K, I \rangle)$, $\langle K, I \rangle$. Since K^S is contained in $\langle K, I \rangle$, we have $K^S = K'I$, where K' is a permutation of \mathfrak{R}. Hence, if $\langle K, I \rangle$ is dihedral, then $(K^S)^2 = 1$ and the order of K equals 2 and, if $\langle K, I \rangle$ is semi-dihedral, then $(K^S)^4 = 1$ and the order of K equals 4. This is a contradiction.

Thus there exists no group satisfying the conditions of the theorem in this case.

5. Case $n = p^m(\beta p^m - \beta + 1)$ with $\beta - 1 = 0 \pmod{p}$.

At first we shall prove that the order of $C_6(\mathfrak{R})$ is equal to $2^{j'} p^{m+m' y}$, where $j' \geq j$, $m' > 0$ and y is a factor of $\beta p^m - (\beta - 1)$ and not divisible by p. Assume that the order of $C_6(\mathfrak{R})$ is equal to $2^{j'} p^{m'}$. Let \mathfrak{R}' be a Sylow 2-subgroup of $C_6(\mathfrak{R})$. Every element (≠ 1) of \mathfrak{R} leaves no symbol of \mathfrak{Q} fixed. Then \mathfrak{R}' must leave at least two symbols of \mathfrak{Q} fixed. Therefore \mathfrak{R}' is conjugate to a subgroup of \mathfrak{R} containing \mathfrak{R}_1. Since $C_6(\mathfrak{R})$ is a direct product of \mathfrak{R}' and \mathfrak{R}, \mathfrak{R}' is normal in $N_6(\mathfrak{R})$. Since the order of $N_6(\mathfrak{R}_1)$ is a factor of the order of $N_6(\mathfrak{R})$, the order of $N_6(\mathfrak{R}_1)$ is greater than or equal to the order of $N_6(\mathfrak{R})$. This contradicts the order of $N_6(\mathfrak{R})$. Hence the order of $C_6(\mathfrak{R})$ is equal to $2^{j'} p^{m+y}$, where y is odd and $y > 1$. Let q (≠ 2, p) be a prime factor of the order of $C_6(\mathfrak{R})$ and let Q be a permutation of $C_6(\mathfrak{R})$ of order q. If q is a factor of $n-1$, then Q leaves just one symbol of \mathfrak{Q} fixed and hence Q cannot be contained in $C_6(\mathfrak{R})$. Thus q is a factor of n and so is y. Next assume that y is not divisible by p. Let \mathfrak{R}' be a normal p-complement in $C_6(\mathfrak{R})$. Since \mathfrak{R}' is cyclic, \mathfrak{R}' has a normal 2-complement \mathfrak{R}''. Since \mathfrak{R}'' is a normal Hall subgroup of \mathfrak{R}', \mathfrak{R}'' is normal even in $N_6(\mathfrak{R})$. Let $Y' \neq 1$ be a permutation of \mathfrak{R}''. Then Y' does not leave any symbol of \mathfrak{Q} fixed. If $\mathfrak{R} \cap C_6(Y')$ contains an involution τ', then τ' is conjugate to τ under \mathfrak{S} and, since $C_6(\tau')$ contains Y', the order of $C_6(\tau')$ is divisible by the order of Y'. But since $C_6(\tau')$ is conjugate to $C_6(\tau) = N_6(\mathfrak{R}_1)$ and the order of $N_6(\mathfrak{R}_1)$ and y are relatively prime, the order of $\mathfrak{R} \cap C_6(Y')$ is odd. Let q be a prime factor of the order of $\mathfrak{R} \cap C_6(Y')$ and let Q be a permutation of $\mathfrak{R} \cap C_6(Y')$ of order q. Then Q leaves at least one symbol of \mathfrak{Q} fixed and hence it leaves at least two symbols of \mathfrak{Q} fixed, which is a contradiction. Thus $\mathfrak{R} \cap C_6(Y') = 1$. Hence we have the following relation:

$$y-1 = |\mathfrak{R}'| - 1 \geq |\mathfrak{R}|,$$

i.e., $y \geq 2^{j'} (p^{m+y} - 1) = 2^{j'} p^{m+y} - (2^{j'} - 1)$. On the other hand y is a factor of $\beta p^{m+y} - (\beta - 1)p^{-1}$. This is a contradiction. Hence y is divisible by p.

266 H. KIMURA
Let us assume $p^m < 2^l$. Let \mathfrak{A} be a normal 2-complement of $C_0\mathfrak{B}$. Then \mathfrak{A} is normal in $N_0(\mathfrak{B})$. Let \mathfrak{V} be a Sylow p-subgroup of \mathfrak{A}. By the Frattini argument $N_0(\mathfrak{V}) = N_0(\mathfrak{B} \cap N_0(\mathfrak{B}))$. Since the order of \mathfrak{A} is odd, we may assume that \mathfrak{A} is a subgroup of $N_0(\mathfrak{B}) \cap N_0(\mathfrak{B})$. Thus there exists a homomorphism π of \mathfrak{A} into $\text{Aut} \mathfrak{V}/\mathfrak{B}$. If π is contained in $\ker \pi$, then π acts trivially on $\mathfrak{V}/\mathfrak{B}$ and \mathfrak{B}. Therefore π acts also trivially on \mathfrak{V} and $C_0\pi$ contains \mathfrak{V} ([4, Theorem 5.3.2]). Hence we have $\ker \pi = 1$ and $\text{Aut} \mathfrak{V}/\mathfrak{B}$ contains a cyclic subgroup of order 2^l. But the order p^m of $\mathfrak{V}/\mathfrak{B}$ is less than 2^l. This is a contradiction. If $m' \leq m$, then $p^m < 2^l$. Thus we may assume $p^m > 2^l$. Then $m' > m$.

Assume $y > 1$. Since \mathfrak{A} is solvable, there exists a subgroup \mathfrak{Y} of \mathfrak{A} of order y. Now \mathfrak{Y} is a factor of $\beta(1-p)^m$. By the Frattini argument it can be assumed that \mathfrak{A} is a subgroup of $N_0(\mathfrak{Y})$. Thus there exists a homomorphism π' of \mathfrak{A} into $\text{Aut} \mathfrak{Y}$. Since the orders of $C_0(\mathfrak{A})$ and \mathfrak{Y} are relatively prime, any elements (± 1) of \mathfrak{Y} are not fixed by $\pi'(\tau)$. Therefore we have $y > 2^l$. This is impossible and hence $y = 1$. \mathfrak{Y} is normal in $N_0(\mathfrak{B})$. Let P' (± 1) be an element of \mathfrak{Y}. It can be seen that $\mathfrak{Y} \cap C_0(\mathfrak{Y})$ is a subgroup of \mathfrak{A}. Hence we have the following relation:

$$p^{m + m'} - 1 = x(p^m - 1), \quad x > 1.$$

From this it is easily seen that m' is divisible by m.

If $\beta p^m - \beta + 1$ is divisible by p^m $(\delta > 1)$ exactly, then $\beta - 1$ must be equal to $p^{mz} + p^{(\beta - 1)m} + \cdots + p^n (z > 1)$. If $\beta - 1$ is equal to $p^{mz} + p^{(\beta - 1)m} + \cdots + p^n (z > 1)$, then $2^l > p^m$ $(\geq p^m)$. Therefore we may assume $\beta = p^{mz} + \cdots + p^n + 1 = (p^m - 1)/(p^m - 1)$ and $m' = \delta m$. \mathfrak{Y} is a Sylow p-subgroup of \mathfrak{A}.

Next we shall prove that $m = 1$ and K has only 2^l-cycles in its cyclic decomposition, i.e., $N_0(\mathfrak{A}) = C_0(\pi)$ and $\mathfrak{R} \cap \mathfrak{R}^\sigma = 1$ or \mathfrak{R} for every element G of \mathfrak{A}. From (2.2) it can be seen that the number of involutions with the cyclic structures $(1, 2) \cdots$ which are conjugate to τ is equal to β. If $\langle K, I \rangle$ is dihedral, then every involution in $i\mathfrak{R}$ is conjugate to I or iK and if $\langle K, I \rangle$ is semi-dihedral, then every involution in $i\mathfrak{R}$ is conjugate to I. Since all involutions with the cyclic structures $(1, 2) \cdots$ are contained in $i\mathfrak{R}$, β is equal to $d/2$ or d. Thus $p^m + 1$ is a power of two and hence $m = 1$. Therefore \mathfrak{A} is a complete Frobenius group, $\mathfrak{A}(\tau) = \mathfrak{A}(K), N_0(\mathfrak{A}) = C_0(\pi)$ and $C_0(\mathfrak{A})$ contains \mathfrak{B}. Therefore the number of elements which leave only the symbol 1 fixed is equal to $2(n - 1) - 1 = (2^l - 1)(\beta i + 1)$ and the number of elements which leave i symbols of Ω fixed is equal to $(2^l - 1)(\beta i - \beta + 1)(\beta i + 1)$. Let G be an element of \mathfrak{A} of order $2^l p^l (l' \geq 1)$. Then $\alpha(G) = 0$ and $\alpha(G') = i$. Therefore the number of cyclic subgroups of \mathfrak{A} of order $2^l p$ is equal to $(\beta i - \beta + 1)(\beta i + 1)$ and those
groups are independent. Thus the number of elements of order $2^i p' (l' \geq 1)$ which leave no symbol of Q fixed is equal to $(2^i-1)(i-1)(\beta i - \beta +1)(\beta i +1)$. Therefore we have

$$|\mathcal{G}| - (n(2^i(n-1)-1-(2^i-1)(\beta i +1))+(2^i-1)(\beta i - \beta +1)(\beta i +1)$$

$$+(2^i-1)(n-1)(\beta i - \beta +1)+1) = n-1.$$

Hence \mathcal{G} is a regular normal subgroup of \mathcal{G}.

Thus there exists no group satisfying the conditions of the theorem in this case.

4. The case n is even and $N_a(R_1)/R_1$ contains a regular normal subgroup.

1. Since $n = i(\beta i - \beta +1)$ is even, i must be even. $G_1 = N_a(R_1)/R_1$ is a doubly transitive permutation group on $Z(R_1)$ containing a regular normal subgroup. In particular, i is equal to a power of 2, say 2^m.

Let \mathcal{G} be the normal 2-subgroup of $N_a(R_1)$ containing R_1 such that \mathcal{G}/R_1 is a regular normal subgroup of $G_1 = N_a(R_1)/R_1$. Since the order of $\mathcal{G} \cap N_a(R_1)$ is equal to $2^i(2^m-1)$, \mathcal{G} is a Sylow 2-subgroup of $G_1 \cap N_a(R_1)$. Let Ψ be a normal 2-complement of $G_1 \cap N_a(R_1)$. The group $\Psi \mathcal{G}/R_1$ is a complete Frobenius group on $Z(1)$ with kernel \mathcal{G}/R_1, and complement $\Psi_1/R_1 (\cong \Psi)$. Since $C_{R_1}(\mathcal{G}) \cap \Psi \mathcal{G}$ is normal in $\Psi \mathcal{G}$, $C_{R_1}(\mathcal{G}) \cap \Psi \mathcal{G}$ contains \mathcal{G} or is contained in \mathcal{G} ([13, 12.6.8]). If \mathcal{G} is greater than $C_{R_1}(\mathcal{G}) \cap \Psi \mathcal{G}$, since the index of \mathcal{G} in $\Psi \mathcal{G}$ must be equal to a power of two, we have $m = 1$. Hence \mathcal{G} is a Zassenhaus group. Thus we have that \mathcal{G} is isomorphic to either $PGL(2, 2^i+1)$ or $PSL(2, 2^{i+1}+1)$, where 2^i+1 and $2^{i+1}+1$ are powers of prime numbers for $PGL(2, 2^i+1)$ and $PSL(2, 2^{i+1}+1)$, respectively ([11], [8], [14] and [18]). Thus it will be assumed that \mathcal{G} is contained in $C_{R_1}(\mathcal{G}) \cap \Psi \mathcal{G}$ and m is greater than one.

Since the index of $\Psi \mathcal{G} \cap C_{R_1}(\mathcal{G})$ in $\Psi \mathcal{G}$ is odd and the order of $\text{Aut} R_1$ is equal to 2^{i-1}, $\Psi \mathcal{G} \cap C_{R_1}(\mathcal{G})$ is equal to $\Psi \mathcal{G}$. Hence $C_{R_1}(\mathcal{G})$ is equal to $N_a(R_1)$ since $N_a(R_1) = \Psi \mathcal{G}$.

PROPOSITION 4.1. Let \mathcal{G} be as in Theorem and let R_1 and \mathcal{G}_1 as above. Assume that \mathcal{G}_1 contains a regular normal subgroup and $N_a(R_1)$ is equal to $C_{R_1}(\mathcal{G})$. Let \mathcal{G} be as above. Then \mathcal{G} contains an involution ($\neq \tau$).

PROOF. If R_1 is equal to R, then \mathcal{G} is a normal Sylow 2-subgroup of $N_a(R)$ and hence it contains I. Therefore it can be assumed that R_1 is less than R and $I \notin \mathcal{G}$. Assume that τ is the unique involution in \mathcal{G}. Since \mathcal{G}/R_1 is an elementary abelian group of order 2^m and $m \geq 2$, \mathcal{G} is a quaternion group (ordinary or generalized) and hence $m = 2$ (and $i = 4$). Thus we have $\alpha(K) = \cdots = \alpha(K^{2^{i-1}}) = 2 < \alpha(K^{2^i}) = 4$. Since $\Psi \mathcal{G}$ is a Sylow 2-subgroup of
Doubly transitive groups 269

N_{\alpha}(\mathfrak{R})$, it may be assumed that I is contained in the coset $K^{st-j-1}\mathfrak{S}$ and hence we have $IK^{st-j-1}=S$, where S is an element $(\neq K_0)$ of \mathfrak{S}. Thus $(K^{st-j-1})_1 = S^2K^{st-j-1}$. Since $N_{\alpha}(\mathfrak{R})=C_{\alpha}(\mathfrak{R})$, we have $K^{st-j}=S^4K^{st}$ and $S^4=K^{st+j+1}$. At first assume that $S^4=1$. Then $j=1$ and $(K^{st+j})_1=K^{st-2}=K^{st-2}$. This implies $d=2$. Hence $n_1=16$ or 28. Since $n-i$ and $i-\alpha(K)$ are divisible by 21 and 21-1, respectively, the order of \mathfrak{S} is equal to four. It can easily be seen that there exists no group satisfying the conditions of Proposition in these cases. Next assume that $S^4\neq 1$ (i.e., $j \neq 1$). Then $(K^{st+j})_1=K^{st-j-1}$ or K^{st-j-1}. This implies $n=16$ or 28. Since $n-i$ is divisible by 21 and $j>1$, we have $n=28$, $l=3$ and $j=2$. By [15] \mathfrak{S} must be isomorphic to $PSU(3, 3^2)$. But a Sylow 2-subgroup of $PSU(3, 3^2)$ is isomorphic to $Z_4 \times Z_2$ and it does not contain a quaternion group of order 16. This is a contradiction. Thus the proof is completed.

COROLLARY 4.2. Let \mathfrak{S}, \mathfrak{S} be as in Proposition 4.1. If d is equal to two, then \mathfrak{S} contains an involution τ' such that it is conjugate to τ.

PROOF. By Proposition, \mathfrak{S} contains an involution $\eta(\pm \tau)$ with the cyclic structure $(1 \ a) \ldots$, where a is a symbol of $3(\mathfrak{R})$. Then $\eta \tau$ has also the cyclic structure $(1 \ a) \ldots$. Hence since \mathfrak{S} is doubly transitive, there exist two involutions with the cyclic structure $(1, b)$, where b is any symbol of Q, such that those are conjugate to η or $\eta \tau$. If τ is neither conjugate to η nor $\eta \tau$, then $g^*(2)$ is greater than $(n-1)$. This contradicts the inequality $g^*(2) < d(n-1)$.

By the above proposition, since $N_{\alpha}(\mathfrak{R})/\mathfrak{R}$ is doubly transitive, we may assume that I is contained in \mathfrak{S}. Since $\mathfrak{S}/\mathfrak{R}$ is complete Frobenius group, all elements $(\neq 1)$ of $\mathfrak{S}/\mathfrak{R}$ are conjugate under $\mathfrak{S}/\mathfrak{R}$. Thus every permutation $(\neq \mathfrak{R})$ of \mathfrak{S} can be represented in the form $V^{-1}KV'$, where V and K are permutations of \mathfrak{S} and \mathfrak{R}, respectively.

2. Case $\mathfrak{R}=\mathfrak{R}$. In this case \mathfrak{S} is a normal Sylow 2-subgroup of $N_{\alpha}(\mathfrak{R})$. Let S be an element of order 2 of \mathfrak{S}. Since S^2 is contained in \mathfrak{S}, S^{st-1} is equal to τ. Assume that I is conjugate to τ. Since $C_{\alpha}(\mathfrak{R})$ and $C_{\alpha}(I)$ are conjugate and K is contained in $C_{\alpha}(I)$, K^{st-1} must be equal to I. This is a contradiction.

Thus there exists no group satisfying the conditions of the theorem in this case.

3. Case $\mathfrak{R} \supseteq \mathfrak{R} \supseteq \langle \tau \rangle$. Since \mathfrak{R} is greater than $\langle \tau \rangle$, a group $\langle K, I \rangle$ is neither dihedral nor semi-dihedral and therefore d is equal to two. By Corollary 4.2 it may be assumed that I is conjugate to τ.

LEMMA 4.3. If \mathfrak{R} is greater than $\langle \tau \rangle$ and less than \mathfrak{S}, then the order of \mathfrak{R} is equal to four and I is not contained in $C_{\alpha}(\mathfrak{R})$.

PROOF. At first assume that the order of \mathfrak{R} is greater than four. Let \mathfrak{S}' be a Sylow 2-subgroup of $N_{\alpha}(\mathfrak{R})$. Let S be an element of \mathfrak{S}' of order
The index of \mathfrak{S} in \mathfrak{S}' is equal to 2^{l-j}. Therefore $S^{2^{l-j}}$ is contained in \mathfrak{S} and, since $\mathfrak{S}/\mathfrak{S}$ is elementary abelian, $S^{2^{l-j+1}}$ is contained in \mathfrak{S}. Since j is greater than 2, $S^{2^{l-j+1}}$ is not identity element. Thus we have that $S^{2^{l-2}}$ is equal to τ. Since IKI is equal to K or $K\tau$, I is contained in $C_{\mathfrak{S}}(K^2)$ and hence K^2 is contained in $C_{\mathfrak{S}}(I)$. Since $N_\mathfrak{S}(\mathfrak{S}_i) = C_{\mathfrak{S}}(\tau)$ is conjugate to $C_{\mathfrak{S}}(I)$, we have that $(K^2)^{2^{l-2}} = \tau$ must be equal to I. This is a contradiction.

Next assume that I is contained in $C_\mathfrak{S}\mathfrak{R}$. Let \mathfrak{S}' be as above. Let S be an element of \mathfrak{S}' of order 2^{l}. Then $S^{2^{l-j}}$ is contained in \mathfrak{S}, $S^{2^{l-j+1}}$ is contained in K_1 and finally $S^{2^{l-1}}$ is equal to τ. Since K is contained in $C_\mathfrak{S}(I)$ and $C_\mathfrak{S}(I)$ is conjugate to $C_\mathfrak{S}(\tau)$, $K^{2^{l-1}}$ must be equal to I. This is a contradiction. Thus the proof is completed.

Lemma 4.4. Let \mathfrak{S}_i be as in Lemma 4.3. Then the order of \mathfrak{S} is equal to 8.

Proof. Assume that the order of \mathfrak{S} is greater than 8. Then $\langle K^{2^{l-3}}, I \rangle$ is abelian since $d = 2$ and $l > 3$. Let η be an involution of $\mathfrak{S}_i(\langle K^{2^{l-3}} \rangle)$. Then $\langle K^{2^{l-3}}, \eta \rangle$ must be abelian, for if it is not abelian, then $\langle K^{2^{l-3}}, I \rangle$ is dihedral and hence $d = 2$.

At first we shall prove that a coset $K^{2^{l-3}}\mathfrak{S}$ does not contain an element of order 4. By Lemma 4.3 the order of \mathfrak{S}_i is equal to 4. Let $K^{2^{l-3}}S$ be an element of order 4 in $K^{2^{l-3}}\mathfrak{S}$, where S is an element of \mathfrak{S}. Then S is not contained in $C_\mathfrak{S}(K^{2^{l-3}})$. Set $S = I^V K_1$, where K_1 and V are elements of \mathfrak{S}_i and \mathfrak{S}, respectively. Then $K^{2^{l-3}}I^V$ must be of order 4. Thus it may be assumed that S is equal to I^V not contained in $C_\mathfrak{S}(K^{2^{l-3}})$, where V is an element of \mathfrak{S}. $(K^{2^{l-3}}S)^\eta$ is an element of \mathfrak{S} and therefore is equal to τ, I^W or $I^W\tau$, where W is an element of \mathfrak{S}. If $(K^{2^{l-3}}S)^\eta = \tau$, then $(K^{2^{l-3}}S)^\eta = (K^{2^{l-3}})\tau$ and hence $S \in N_\mathfrak{S}(\langle K^{2^{l-3}} \rangle)$. Thus $\langle K^{2^{l-3}}, S \rangle$ must be abelian. This is a contradiction. If $(K^{2^{l-3}}S)^2 = I^W$ or $I^W\tau$, then $(K^{2^{l-3}}S)^2 = K^{-2^{l-3}}I^W$ or $K^{-2^{l-3}}I^W\tau$, respectively. Hence
\[K^{2^{l-2}} = (K^{2^{l-3}}S)^2 = (K^{-2^{l-3}}I^W)^2 \]
and
\[(K^{-2^{l-3}}I^W = K^{2^{l-2}}K^{2^{l-3}}. \]

Thus I^W is contained in $N_\mathfrak{S}(\langle K^{2^{l-3}} \rangle)$ and therefore $\langle I^W, K^{2^{l-3}} \rangle$ must be abelian. Hence $K^{2^{l-3}}K^{2^{l-3}} = K^{-2^{l-3}}$. Thus the order of \mathfrak{S} must be equal to $l-1$. This is a contradiction.

Next let S be an element of order 2^{l-1} in $\mathfrak{S}\mathfrak{S}$, and let \mathfrak{S} be the image of S by the natural homomorphism of $\mathfrak{S}\mathfrak{S}$ onto $\mathfrak{S}\mathfrak{S}/\mathfrak{S}$. If the order of \mathfrak{S} is equal to 2^{l-2}, then $S^{2^{l-3}}$ is contained in a coset $K^{2^{l-3}}S$. This contradicts the first part in the proof. Hence we have that the order of \mathfrak{S} is less than 2^{l-2} and hence $S^{2^{l-3}}$ is contained in S. Therefore $S^{2^{l-3}}$ is equal to τ. Since $C_{\mathfrak{S}}(I)$ is conjugate to $N_\mathfrak{S}(\mathfrak{S}_i)$ and K^2 is contained in $C_{\mathfrak{S}}(I)$, $K^{2^{l-1}} = I$. This is a contradiction. Thus the proof is completed.
By two lemmas the orders of \(\mathfrak{R} \) and \(\mathfrak{R}_1 \) are equal to 8 and 4, respectively. Clearly \(N_\mathfrak{R}(\mathfrak{R})/\mathfrak{R} \) is a complete Frobenius group on \(\mathfrak{Z}(\mathfrak{R}) \). Apply the argument in § 2 to \(N_\mathfrak{R}(\mathfrak{R}_1)/\mathfrak{R}_1 \), and we obtain that \(\alpha(\mathfrak{R}) \) must be a power of two and \(i = \alpha(\mathfrak{R})^2 \). Thus a Frobenius kernel of \(N_\mathfrak{R}(\mathfrak{R})/\mathfrak{R} \) is a Sylow 2-subgroup of \(N_\mathfrak{R}(\mathfrak{R})/\mathfrak{R} \). Since, by Lemma 4.3, I is not contained in \(C_\alpha(K) \), a Sylow 2-subgroup of \(N_\mathfrak{R}(K) \) is greater than \(C_\alpha(\mathfrak{R}) \) ([13, 12.6.8]). Since the order of \(N_\mathfrak{R}(\mathfrak{R})/C_\alpha(\mathfrak{R}) \) is a power of two, \(\alpha(K)-1 \) must be equal to one and hence \(\alpha(K) = 2 \). Thus we have \(i = 4 \) and \(n = 16 \) or 28. Since \(n-i \) must be divisible by the order of \(\mathfrak{R} \), we have \(n = 28 \). \(\mathfrak{R} \) satisfies the conditions of the theorem in [15] and hence \(\mathfrak{R} \) is isomorphic to \(PSU(3, 3^2) \).

4. Case \(\mathfrak{R}_1 = \langle \tau \rangle \). We shall prove that \(d = 2 \) or the order of \(\mathfrak{R} \) is equal to four, \(\langle K, I \rangle \) is dihedral and \(i = 4 \). In this case every permutation \((\mathfrak{R}_1) \) of \(\mathfrak{R} \) can be represented uniquely in the form \(I^r \tau \) or \(I^r \tau \tau \), where \(V \) is any permutation of \(\mathfrak{R} \). Thus every permutation \((\mathfrak{R}_1) \) of \(\mathfrak{R} \) is of order 2 and hence \(\mathfrak{R} \) is elementary abelian. Set \(\mathfrak{R}_2 = \langle K^{2^{l_i-j_i}} \rangle \), where \(\alpha(\tau) = \alpha(K^{2^{l_i-j_i}}) = \cdots = \alpha(K^{2^{l_i-j_i}}) \). Set \(i' = \alpha(\mathfrak{R}_2) \). Then we may assume \(\mathfrak{Z}(\mathfrak{R}_2) = \{1, 2, \ldots, i'\} \).

Hence \(i' \) is equal to a power of two, say \(2^{m'} \). By the inductive hypothesis \(N_\mathfrak{R}(\mathfrak{R}_2)/\mathfrak{R}_2 \) contains a regular normal subgroup. Let \(\mathfrak{S}_2 \) be a normal 2-subgroup of \(N_\mathfrak{R}(\mathfrak{R}_2) \) containing \(\mathfrak{R}_2 \) such that \(\mathfrak{S}_2/\mathfrak{R}_2 \) is a regular normal subgroup of \(N_\mathfrak{R}(\mathfrak{R}_2)/\mathfrak{R}_2 \) and let \(\mathfrak{B}_2 \) be a 2-complement of \(\mathfrak{S}_2 \cap N_\mathfrak{R}(\mathfrak{R}_2) \). Then \(\mathfrak{B}_2 \mathfrak{R}_2/\mathfrak{R}_2 \) is a complete Frobenius group on \(\mathfrak{Z}(\mathfrak{R}_2) \). Thus \(C_\alpha(\mathfrak{R}_2) \cap \mathfrak{B}_2 \mathfrak{S}_2 \) contains \(\mathfrak{S}_2 \) or is less than \(\mathfrak{S}_2 \).

If \(C_\alpha(\mathfrak{R}_2) \cap \mathfrak{B}_2 \mathfrak{S}_2 \) is less than \(\mathfrak{S}_2 \), then \(I \) is not contained in \(C_\alpha(\mathfrak{R}_2) \) and, since the order of \(\mathfrak{S}_2 \mathfrak{R}_2/C_\alpha(\mathfrak{R}_2) \cap \mathfrak{B}_2 \mathfrak{S}_2 \) is a power of two, \(m' \) must be equal to one. Thus \(\mathfrak{S}_2/\mathfrak{R}_2 \mathfrak{R}_2/\mathfrak{R}_2 \). On the one hand, it is trivial that \(i-2 \) must be divisible by \(2^{l_i} \). On the other hand, \(i \) is of a form \(2^{l_i} \beta^i - \beta^j + 1 \) where \(\beta^j \) is less than or equal to \(2^{l_i} \) and hence \(\beta^j \) is odd. Therefore we have \(l = 2 \), \(\beta^j = 1 \) and \(i = 4 \).

If \(C_\alpha(\mathfrak{R}_2) \cap \mathfrak{B}_2 \mathfrak{S}_2 \) contains \(\mathfrak{S}_2 \), then \(K^j = K \) or \(K^j \) and hence \(d = 2 \).

5. Case \(|\mathfrak{R}| = 4, \mathfrak{R}_1 = \langle \tau \rangle \) and \(K = K^j \). Let \(\mathfrak{R}_2 \) and \(\mathfrak{S}_2 \) be as in § 4.4. Since \(\mathfrak{R}_2 = \mathfrak{R}_1, \mathfrak{S}_2/\mathfrak{R}_1 \) is a regular normal subgroup of \(N_\mathfrak{R}(\mathfrak{S}_2)/\mathfrak{R}_1 \) and \(N_\mathfrak{R}(\mathfrak{R})/\mathfrak{R}_1 \mathfrak{R}_1 \).

Since \(\langle K, I \rangle \) is dihedral, involutions with the cyclic structure \((12) \cdots \) are \(I, IK, IK^2, \) and \(IK^3 \), and \(I \) and \(IK \) are conjugate to \(IK^2 \) and \(IK^3 \), respectively. Therefore \(g^*(2) = 0 \) or \(2(n-1) \).

If \(g^*(2) = 0 \), then \(n = 4(4-4-3) = 4 \cdot 13 \). Let \(\mathfrak{S}_{13} \) be a Sylow 13-subgroup of \(\mathfrak{R} \). Since every involution leaves four symbols of \(\Omega \) fixed, the order of \(C_\alpha(\mathfrak{S}_{13}) \) is equal to 13. Thus the index of \(N_\mathfrak{R}(\mathfrak{S}_{13}) \) in \(\mathfrak{R} \) is a multiple of 17.4. This contradicts the Sylow's theorem.

If \(g^*(2) = 2(n-1) \), then \(n = 4(2n-1) = 4 \cdot 7 \). Let \(\eta \) be an involution leaving
no symbol of Ω fixed. Then, since $g^*(2) = 2(n-1)$, G_{Ω^1} must be equal to $2n$. Let \mathfrak{P}_1 be a Sylow 7-subgroup of \mathfrak{S} contained in C_{Ω^1}. Using Sylow's theorem \mathfrak{P}_1 is normal in C_{Ω^1}. Hence the order of $N_{\mathfrak{S}}(\mathfrak{P}_1)$ is a multiple of $8 \cdot 7$. This contradicts the Sylow's theorem.

Thus there exists no group satisfying the conditions of the theorem in this case.

6. Case $\mathfrak{S}_1 = \langle \tau \rangle$, $d = 2$ and $n = i^2$. In this case a normal subgroup \mathfrak{S} of $N_{\mathfrak{S}}(\mathfrak{S}_1)$ is an elementary abelian 2-group. We shall prove several lemmas.

Lemma 4.5. \mathfrak{S} contains every involution of $N_{\mathfrak{S}}(\mathfrak{S}_1)$.

Proof. Let a be an involution of $N_{\mathfrak{S}}(\mathfrak{S}_1)$. If a does not contain an involution, then the proof is complete. Let a be an involution in a coset $S^2 = S^2$. Therefore, since S is an involution, d must be greater than two. This is a contradiction.

Lemma 4.6. Let G be an element of \mathfrak{S}. Then $\mathfrak{S} \cap \mathfrak{S} = 1$ or \mathfrak{S}.

Proof. Let τ' be an involution of $\mathfrak{S} \cap \mathfrak{S}$. If τ' is conjugate to τ, then, since $C_{\mathfrak{S}}(\tau')$ contains \mathfrak{S} and \mathfrak{S} coincides with \mathfrak{S} by Lemma 4.5. Thus an involution of \mathfrak{S} which is conjugate to τ in \mathfrak{S} is conjugate to τ in $N_{\mathfrak{S}}(\mathfrak{S})$. By Corollary 4.2, I or $I\tau$ is conjugate to τ in G. On the other hand, I or $I\tau$ is not conjugate to τ in \mathfrak{S}, since $g^*(2) = n-1$. Hence the number of involutions of \mathfrak{S} each of which is conjugate to τ is equal to i and the number of involutions of \mathfrak{S} each of which leaves no symbol of Ω fixed is equal to $i - 1$. Hence the order of $N_{\mathfrak{S}}(\mathfrak{S})$ is equal to $2^i(i-1)$ and the following relation is obtained:

$$n - 1 = g^*(2) \leq (i-1)[\mathfrak{S} : N_{\mathfrak{S}}(\mathfrak{S})] = n - 1.$$

Thus $\mathfrak{S} \cap \mathfrak{S} = 1$ or \mathfrak{S}.

Lemma 4.7. Let η and ζ be different involutions. If $\alpha(\eta) = \alpha(\zeta) = 0$, then $\alpha(\eta \zeta) = 0$.

Proof. Let a be a symbol of $\mathfrak{S}(\eta \zeta)$. Let $\langle a, b \rangle \cdots$ and $\langle b, c' \rangle \cdots$ be the cyclic structure of η and ζ, respectively. Then $a = c'$. Since $g^*(2) = n-1$, there exists just one involution leaving no symbol of Ω fixed with the cyclic structure $\langle a, b \rangle \cdots$ and hence $\eta = \zeta$.

Corollary 4.8. A set \mathfrak{S}_1 consisting of all involutions of \mathfrak{S} each of which is not conjugate to τ and identity element is a characteristic subgroup of \mathfrak{S}. In particular $N_{\mathfrak{S}}(\mathfrak{S}_1) = N_{\mathfrak{S}}(\mathfrak{S})$.

By Corollary 4.8, there exists just $i + 1$ subgroups $\mathfrak{S}_1, \mathfrak{S}_2, \ldots, \mathfrak{S}_{i+1}$ which are conjugate in \mathfrak{S} and $\mathfrak{S}_1 \cap \mathfrak{S}_i = 1$ for $s \neq t$.

Lemma 4.9. Let τ' be an involution of $N_{\mathfrak{S}}(\mathfrak{S})$. If τ' is conjugate to τ, then τ' is contained in \mathfrak{S}.

Proof. Set $\tau^a = \tau'$. Since the order of \mathfrak{S} is even, it is trivial that there
exists an element ζ of \mathfrak{G} with $ζτ' = ζ$. \mathfrak{G}^a is normal in $C_θ(τ')$ and it contains $ζ$ and $τ'$ by Lemma 4.5. Thus $\mathfrak{G}_f \cap \mathfrak{G}^a$ contains $ζ$ and hence $\mathfrak{G} = \mathfrak{G}^a$ by Lemma 4.6. Finally $τ'$ is an element of \mathfrak{G}.

Lemma 4.10. Let $η$ be an involution which is not contained in \mathfrak{G}. If $α(η) = 0$, then $α(τη) = 0$ and the order of $τη$ is equal to 2^r with $r > 1$.

Proof. Assume $α(τη) ≠ 0$. Let a be a symbol of $3(τη)$. It is trivial that a is not a symbol of $3(τ)$. Thus let $(a, b) \cdots$ and $(b, c') \cdots$ be the cyclic structures of $τ$ and $η$, respectively. Then $a = c'$ and $τητ = (a, b) \cdots$. Since $g^*(2) = n-1$, there exists just one involution with the cyclic structure $(a, b) \cdots$ such that it leaves no symbol of $Ω$ fixed. Thus we have $τητ = η$. Therefore $η$ must be contained in \mathfrak{S} and hence $α(τη) = 0$. Next assume that the order of $τη$ is not equal to 2^r. Let p be an odd prime factor of the order of $τη$ and let pq be the order of $τη$. Then the order of $(τη)^p$ is equal to p and hence $α((τη)^p) = 1$. Therefore $α(τη) = 1$. Thus the order of $τη$ is equal to a power of two.

Lemma 4.11. Let $η$ be an involution which is not conjugate to $τ$. Then $η$ is contained in $N_{\mathfrak{G}}(\mathfrak{S})$.

Proof. Let us assume that $η$ is not contained in \mathfrak{G}. By Lemma 4.10, the order of $τη$ is equal to 2^r with $r > 1$. Thus $τ(τη)^{2^r} = τ$. Set $γ_{τη}(s) = τ(τη)^{2^s} = τ^{2^s}$. Then $γ_{τη}(r-1)$ is contained in $C_θ(τ)$ and hence by Lemma 4.5, it is contained in \mathfrak{S}. Since $γ_{τη}(r-1) = τ^{r-2}$, $γ_{τη}(r-2)$ is contained in $N_{\mathfrak{G}}(\mathfrak{S})$ by Lemma 4.6. By Lemma 4.9 it is contained in \mathfrak{S}. Continuing in the similar way, it can be shown that $γ_{τη}(1) = τ^1$ is contained in \mathfrak{S}. By Lemma 4.6, $η$ is contained in $N_{\mathfrak{G}}(\mathfrak{S})$.

By Lemma 4.11, $N_{\mathfrak{G}}(\mathfrak{S}) = N_{\mathfrak{G}}(\mathfrak{S}_i)$ contains $\mathfrak{S}_t (2 ≤ t ≤ i+1)$. Similarly $N_{\mathfrak{G}}(\mathfrak{S}_i)$ contains \mathfrak{S}_t. Therefore $\mathfrak{S}_t \mathfrak{S}_i$ is the direct product $\mathfrak{S}_t × \mathfrak{S}_i$. In the similar way it can be proved that every element of \mathfrak{S}_t is commutative with any element of \mathfrak{S}_t' ($1 ≤ t, t' ≤ i+1$). Thus $\mathfrak{K} = \mathfrak{S}_1 \cup \cdots \cup \mathfrak{S}_{i+1}$ is a group. Hence \mathfrak{K} is a regular normal subgroup of \mathfrak{S}.

Thus there exists no group satisfying the conditions of the theorem in this case.

7. Case $\mathfrak{K}_1 = \langle τ \rangle$, $d = 2$ and $n = i(2i-1)$. In this case $g^*(2) = 0$. Hence every involution is conjugate to $τ$. The order of \mathfrak{S} is equal to $2^m(2m+1-1)$ ($2^{m+1}+1)(2m-1)$.

Set $\mathfrak{S}' = \mathfrak{S}/\mathfrak{S}$. Since $\mathfrak{S}'/\mathfrak{S}$ is a cyclic Sylow 2-subgroup of $N_{\mathfrak{G}}(\mathfrak{S})/\mathfrak{S}$, $N_{\mathfrak{G}}(\mathfrak{S})/\mathfrak{S}$ is solvable and hence $N_{\mathfrak{G}}(\mathfrak{S})$ is solvable. We shall prove that the order of $N_{\mathfrak{G}}(\mathfrak{S})$ is equal to $2^{m+1}2^{m-1}$. Remark that Lemma 4.5 is also true for this case. Let $τ' = τ^v$ be an element of \mathfrak{S}, where G is an element of \mathfrak{G}. The same argument as in the proof of Lemma 4.6 shows that G is contained in $N_{\mathfrak{G}}(\mathfrak{S})$. Thus every element ($≠ 1$) of \mathfrak{S} is conjugate to $τ$ under $N_{\mathfrak{G}}(\mathfrak{S})$.

Doubly transitive groups
Hence the index of $C_0(\tau)$ in $N_4(\Omega)$ is equal to $2^{m+1}-1$.

Let \mathfrak{B} be a normal 2-complement of $\mathfrak{H} \cap N_4(\Omega)$. Since $N_4(\Omega)$ is solvable, there exists a Hall subgroup \mathfrak{A} of order $(2^m-1)(2^{m+1}-1)$ of $N_4(\Omega)$ containing \mathfrak{B}. Since $\mathfrak{H}/\mathfrak{A}$ is a complete Frobenius group of degree 2^n, all Sylow subgroups of \mathfrak{H} are cyclic. Let r be the least prime factor of the order of \mathfrak{B}. Let \mathfrak{H} be a Sylow r-subgroup of \mathfrak{B}. Then \mathfrak{A} is cyclic and leaves only the symbol 1 fixed. Hence $N_4(\mathfrak{B})$ is contained in \mathfrak{H}. Let \mathfrak{R} be a Sylow 2-subgroup of $C_0(\Omega)$. Since \mathfrak{H} is a Sylow 2-subgroup of \mathfrak{H} and $C_0(\Omega)$ is a subgroup of \mathfrak{H}, \mathfrak{R} is conjugate to a subgroup of \mathfrak{H}. Thus it may be assumed that \mathfrak{R} is a subgroup of \mathfrak{H}. Using Sylow's theorem, we obtain that $N_4(\mathfrak{B}) = C_0(\Omega)(N_4(\mathfrak{B}) \cap N_4(\Omega)) = C_0(\Omega)(N_4(\mathfrak{B}) \cap N_4(\mathfrak{B}))$ since $N_4(\mathfrak{B})$ is a subgroup of \mathfrak{H}. Let CVR' be an element of $N_4(\Omega)$ of odd order u, where C, V, and K' are elements of $C_0(\Omega)$, \mathfrak{B} and \mathfrak{R}, respectively. Then $(CVR')^u = C(VK')^u$, where C' is an element of $C_0(\Omega)$, and $(VK')^u = C^{-1}$. Set $s = |(VK')^u| / |K'|$, where $|CVR'|$ and $|K'|$ are orders of $(VK')^u$ and K', respectively. Then s is an odd integer and $(VK')^u$ is contained in a Sylow 2-subgroup of $C_0(\Omega)$ and hence so is VK'. In particular CVR' is an element of $C_0(\Omega)$. Hence we obtain that $N_4(\mathfrak{B}) \cap \mathfrak{H} = C_0(\Omega)(N_4(\mathfrak{B}) \cap \mathfrak{B}) \cap \mathfrak{H} = C_0(\Omega)(N_4(\mathfrak{B}) \cap \mathfrak{B}) \cap \mathfrak{H} = C_0(\Omega) \cap \mathfrak{H}$. By the splitting theorem of Burnside \mathfrak{H} has the normal r-complement. Continuing in the similar way, it can be shown that \mathfrak{H} has the normal subgroup \mathfrak{B} of order $2^{m+1}-1$, which is a complement of \mathfrak{B}. Every permutation $\tau \not= 1$ of \mathfrak{B} leaves no symbol of Ω fixed and hence it is not commutative with any permutation $\not= 1$ of \mathfrak{B}. Let B be a permutation of \mathfrak{B} of a prime order, say q. Then all the permutations are conjugate to either B or B^{-1} under \mathfrak{B}. This implies that \mathfrak{B} is an elementary abelian q-group of order q^r. Then it follows that $2^{m+1}-1 = q^s$. Hence $s = 1$ and \mathfrak{B} is cyclic of order q. \mathfrak{B} is also cyclic.

Let the order of $N_4(\mathfrak{B})$ be equal to $\frac{1}{2}x(q-1)q$. If the order of $C_0(\mathfrak{B})$ is even, then there exists an involution τ' in $C_0(\mathfrak{B})$ which is conjugate to τ and such that $C_0(\tau')$ contains \mathfrak{B}. But the orders of $C_0(\tau)$ and \mathfrak{B} are relatively prime. Hence, since $C_0(\tau')$ is conjugate to $C_0(\tau)$, the order of $C_0(\mathfrak{B})$ is odd. Therefore, since the order of the automorphism group of \mathfrak{B} is equal to $q-1 = 2^{m+1}-2$, the order of $N_4(\mathfrak{B})$ is not divisible by four.

Using Sylow's theorem we obtain the following congruence:

$$2^{l-1}(q+1)(q+2)/x \equiv 1 \pmod{q}.$$

This implies that $2^{l-1}(q+1)(q+2) = x(qy+1)$, where y is positive since x is less than $2^{l-1}(q+1)(q+2)$. Then we have that $x = yq + 2l$, where $2^{l-1}z \geq 0$. It can be proved that z must be equal to 0 or 2^{l-1}. If $z = 0$, then the order of $N_4(\mathfrak{B})$ is equal to $2^l q^l(q-1)$ and hence, since $l > 1$, it is divisible by four. If $z = 2^{l-1}$,
then the order of $N_{a}(B)$ is equal to $2^{n-1}(q+2) \frac{1}{2} q(q-1)$. Let Y be a permutation $(\neq 1)$ of odd prime order dividing $(q+2) \frac{1}{2} (q-1)$ which is contained in $N_{a}(B)$. Since Y leaves just one symbol of Ω fixed, Y is not contained in $C_{a}(B)$. Hence we obtain the following;

$$q-1 \geq \frac{|N_{a}(B)/C_{a}(B)|}{\frac{1}{2} (q+2)(q-1)}.$$

But this is impossible.

Thus there exists no group satisfying the conditions of the theorem in this case.

5. The case n is even and $N_{a}(R_{a})/R_{a}$ does not contain a regular normal subgroup.

1. Since $N_{a}(R)/R$ is a complete Frobenius group and hence it contains a regular normal subgroup, R_{a} is a proper subgroup of R.

2. Case $R_{a} = \langle \tau \rangle$ and $2 \leq 8$. By inductive hypothesis, if $2' = 4$, then $G_{a} = N_{a}(R_{a})/R_{a}$ is isomorphic to either $PSL(2, 5)$ or $SL*(2, 8)$ and, if $2' = 8$, then G_{a} is isomorphic either $PGL(2, 5)$ or $PSL(2, 9)$.

At first assume that $d = 2$. If $2' = 8$, then $i = 6$ or 10. Hence $n - i = \beta(i - 1)$ $(\beta = 1$ or 2) is not divisible by 8. But $n - i$ must be divisible by the order of R. This is a contradiction. If G_{a} is isomorphic to $PSL(2, 5)$, then $i = 6$ and, since $n - i$ must be divisible by 4, n is equal to $6(2i - 1) = 6 \cdot 11$. Let Ψ_{11} be a Sylow 11-subgroup of G. It is trivial that, since $g * (2) = 0$ and the order of $N_{a}(R_{a})$ is equal to $6 \cdot 5 \cdot 4$, the order of $C_{a}(\Psi_{11})$ is odd. Since the order of $C_{a}(\Psi_{11})$ and $n - 1$ are relatively prime, the order of $C_{a}(\Psi_{11})$ is equal to 11 or 33. The index of $C_{a}(\Psi_{11})$ in $N_{a}(R_{a})$ is a factor of 10. Thus this contradicts the Sylow's theorem.

If G_{a} is isomorphic to $SL*(2, 8)$, then $i = 28$. Since every involution of G_{a} leaves just four symbols of B, we obtain that $\alpha(I) = 0$. Therefore, since every involution of G is conjugate to a permutation with the cyclic structure $(12) \cdots$, we have that $g * (2) = 0$ and hence $n = i(2i - 1)$. Thus the order of G is equal to $4 \cdot 3^{i} \cdot 19$. Since G is cyclic, G has a normal 2-complement C of order $3^{i} \cdot 19$. Let Ψ_{19} be Sylow 19-subgroup of G. By Sylow's theorem Ψ_{19} is normal in G. Since the order of the automorphism group of Ψ_{19} is equal to 18, τ must be contained in $C_{a}(\Psi_{19})$. This is a contradiction.

Next we shall consider the case $d \neq 2$. If $2' = 4$, then $\langle K, I \rangle$ is dihedral. If G_{a} is isomorphic to $PSL(2, 5)$, then $i = 6$ and, since $n - i = i\beta(i - 1)$ must be divisible by 4, $\beta = 2$ or 4. Therefore $\langle K, I \rangle$ is a Sylow 2-subgroup of G. By [4, Theorem 7.7.3] $C_{a}(\tau)$ has a normal 2-complement and hence $C_{a}(\tau)$ is solvable.
Thus \(\Theta_1 = C_\alpha(\tau)/\langle \tau \rangle \) must be solvable and this is a contradiction. If \(\Theta_1 \) is isomorphic to \(SL^*(2, 8) \), then, since for every involution \(\gamma \) of \(SL^*(2, 8) \), \(\alpha(\gamma) = 4 \), \(\alpha(\Theta) = 4 \). Hence the order of \(N_\Theta(\Theta)/\Theta \) is equal to 4·3. Since \(I \) is not contained in \(C_\alpha(\Theta) \) and \(N_\Theta(\Theta)/\Theta \) is a complete Frobenius group, \(C_\alpha(\Theta) \) is contained in a Sylow 2-subgroup. Thus the order of \(N_\Theta(\Theta)/C_\alpha(\Theta) \) is divisible by 3. This is a contradiction.

If \(2z = 8 \), then \(i = 6 \) or 10. Since \(n - i = 3(i-1) \) must be divisible by 8, \(3 \) is equal to 4 or 8. If \(\langle K, I \rangle \) is dihedral, then \(\langle K, I \rangle \) is a Sylow 2-subgroup of \(\Theta \). Thus \(C_\alpha(\tau) \) is solvable and also \(C_\alpha(\tau)/\langle \tau \rangle \) is solvable. Hence \(\langle K, I \rangle \) must be semi-dihedral and \(d = 4 \). Since \(g^*(2) = 0 \) and \(\Theta_1 \) is Zassenhaus group, all involutions are conjugate and a permutation leaving at least three symbols of \(\Omega \) fixed is an involution. Thus \(\Theta \) satisfies the conditions in [12]. Hence by [6] and [12], \(\Theta \) is isomorphic to either \(PSU(3, 5^p) \) or one of the groups of Ree type (see [16]). Since a Sylow 2-subgroup of a group of Ree type is elementary abelian of order 8, \(G \) is isomorphic to \(PSU(3, 5^p) \).

3. Case \(\mathfrak{R}_1 = \langle \tau \rangle \) and \(2^d > 8 \). \(\Theta_1 \) is isomorphic to one of the groups \(PSU(3, 3^p) \), \(PSU(3, 5^p) \), \(PGL(2, *) \) and \(PSL(2, *) \). Then \(i \) is not divisible by 8. Since \(n - i = 3(i-1) \) is divisible by \(2^d \), \(\beta \) is divisible by 4. Thus we have that \(d > 2 \) and hence \(\langle K, I \rangle \) is dihedral or semi-dihedral and in particular \(\langle K, I \rangle/\langle \tau \rangle \) is dihedral. Therefore \(\Theta_1 \) is isomorphic to either \(PGL(2, *) \) or \(PSL(2, *) \) and \(i \) is divisible by 2 exactly. Thus we have that \(\beta = 2^{i-1} \) or \(2^i \). Thus \(\langle K, I \rangle \) is a Sylow 2-subgroup of \(\Theta \). If \(\langle K, I \rangle \) is dihedral, then \(C_\alpha(\tau) \) is solvable and \(\Theta_1 \) is semi-dihedral. Then \(\beta = 2^{i-1} \) and \(g^*(2) = 0 \). Again by [6] and [12], \(G \) must be isomorphic to either \(PSU(3, 5^p) \) or one of the groups of Ree type. This is a contradiction.

Thus there exists no group satisfying the conditions of the theorem in this case.

4. Case \(\mathfrak{R}_1 > \langle \tau \rangle \). Since \(\mathfrak{R}_1 \) is a proper subgroup of \(\mathfrak{R} \), the order of \(\mathfrak{R} \) is greater than 4. At first assume that \(d = 2 \). By inductive hypothesis \(i \) is not divisible by 8. Since \(n - i = 3(i-1) \) is divisible by \(2^i \), \(\beta = 2 \), \(2^i = 8 \) and \(i \) is divisible by 4. Thus we obtain that \(\Theta_1 \) is isomorphic to \(SL^*(2, 8) \) and \(n = 2^i \cdot 7 \cdot 5 \cdot 11 \). If we consider a Sylow 19-subgroup of \(\Theta \), likewise in 5.2, we can obtain a contradiction.

Next we assume that \(d > 2 \). Then \(\langle K, I \rangle/\mathfrak{R}_1 \) is dihedral. Hence \(\Theta_1 \) is isomorphic to either \(PGL(2, *) \) or \(PSL(2, *) \). Since \(n - i \) is divisible by \(2^i \), we have that \(\beta = 2^i \) or \(2^{i-1} \). Therefore \(\langle K, I \rangle \) is a Sylow 2-subgroup of \(\Theta \). If \(\langle K, I \rangle \) is dihedral, then \(C_\alpha(\tau) \) is solvable and hence \(C_\alpha(\tau)/\mathfrak{R}_1 \) must be solvable. Thus \(\langle K, I \rangle \) is semi-dihedral. Set \(\Theta_0 = C_\alpha(\tau)/\langle \tau \rangle = N_\Theta(\mathfrak{R}_1)/\langle \tau \rangle \). Then, since \(\langle K, I \rangle/\mathfrak{R}_1 \) is a Sylow 2-subgroup of \(\Theta_0 \) and a dihedral group. Let \(\eta = K^{i-2}\langle \tau \rangle \) be the involution in the center of \(\langle K, I \rangle/\langle \tau \rangle \). It can be easily
Doubly transitive groups

proved that \(\eta \) is contained in the center of \(G_\eta \). Thus, by [4, Theorem 7.7.3], \(G_\eta \) has a normal 2-complement and hence \(G_\eta \) is solvable. Hence \(G_\eta \) must be solvable. This is a contradiction.

Thus there exists no group satisfying the conditions of the theorem in this case.

Thus Theorem is proved.

Hokkaido University

References