Normal parts of certain operators

By K. F. CLANCEY and C. R. PUTNAM

(Received July 31, 1971)

1. Only bounded operators T on a Hilbert space H will be considered. A compact set X of complex numbers containing $sp(T)$ is said to be a spectral set of T (von Neumann [8]) if $\|f(T)\| \leq \sup_{z \in X} |f(z)|$, where $f(z)$ is a rational function having no poles on X; cf. Riesz and Sz.-Nagy [12], p. 435. For any compact set X let $C(X)$ denote the space of continuous functions on X and $R(X)$ the uniform closure of the set of rational functions with poles off X. It was shown by von Neumann that if X is a spectral set of T and if $C(X) = R(X)$ then T must be normal; see also Lebow [6], p. 73. It may be noted that $C(X) = R(X)$ holds when X has Lebesgue plane measure 0; this result is due to Hartogs and Rosenthal (cf. Gamelin [4], p. 47).

An operator T is said to be hyponormal if

$$\tag{1.1} T^*T - TT^* \geq 0.$$

It is well-known that a subnormal operator, that is, an operator having a normal extension on a larger Hilbert space, is hyponormal, but that the converse need not hold. Further, if T is subnormal then $sp(T)$ is a spectral set of T. On the other hand, if T is only hyponormal, this need not be the case; see Clancey [1].

Let T be hyponormal and let D denote an open disk satisfying

$$\tag{1.2} sp(T) \cap D \neq \emptyset.$$

In case the set $sp(T) \cap D$ has planar measure zero then T has a normal part, that is,

$$\tag{1.3} T = T_1 \oplus N, \quad N = \text{normal};$$

see Putnam [9]. Whether every compact set X with the property that

$$\tag{1.4} X \cap D \neq \emptyset \Rightarrow \text{meas}_2(X \cap D) > 0 \quad (D = \text{open disk})$$

is the spectrum of a completely hyponormal operator (hyponormal and having no non-trivial reducing space on which it is normal) is not known. In this connection, see [3], [11]. As to subnormal operators, however, the authors

This work was supported by National Science Foundation research grants.
Normal parts of certain operators

have shown in [2] that a compact set X is the spectrum of a completely subnormal operator (subnormal and completely hyponormal) if and only if

\[X \cap D \neq \emptyset \Rightarrow R(X \cap \overline{D}) \neq C(X \cap \overline{D}), \]

where D denotes an open disk. (The closure of a set A is denoted by \overline{A}.)

In case T is subnormal, then polynomials in T and, in fact, rational functions of T are also subnormal. On the other hand, if T is assumed only to be polynomially hyponormal, so that all polynomials in T are hyponormal, it seems to be unknown whether all rational functions of T must also be hyponormal. Further, it is also apparently not known whether T must be subnormal if all rational functions of T are hyponormal.

It may be noted that if T is hyponormal (and invertible) then so also is its inverse; Stampfli [13]. Also, there exist hyponormal operators T which are not subnormal but are such that all powers T^2, T^3, \ldots are subnormal; Stampfli [14]. In addition, for every positive integer n there exists a hyponormal operator T which is not subnormal and such that all polynomials in T of degree not exceeding n are hyponormal; Joshi [5].

If T is hyponormal then $\|T\| = \sup \{|z| : z \in \text{sp}(T)\}$. It follows that if all rational functions of T are hyponormal then $\text{sp}(T)$ is a spectral set of T. Further, if T is hyponormal and if all polynomials in T are hyponormal and if, in addition, $\text{sp}(T)$ does not separate the plane, then all rational functions of T are also hyponormal. This is easily deduced from Mergelyan's theorem. (See Lebow [6], p. 66, where it is shown that if X is a compact set which does not separate the plane and if for an operator T, $\|p(T)\| \leq \sup_{z \in X} |p(z)|$ holds for any polynomial $p(z)$, then X is a spectral set of T.)

It will be shown in the present paper that certain results on subnormal operators obtained in [2] and [10] can be extended to operators T for which $\text{sp}(T)$ is a spectral set or to operators T which are polynomially hyponormal.

Theorem 1. Let $\text{sp}(T)$ be a spectral set of T. Suppose that D is an open disk satisfying (1.2) and for which

\[R(\text{sp}(T) \cap \overline{D}) = C(\text{sp}(T) \cap \overline{D}). \]

Then T has a normal part, so that (1.3) holds.

In the special case in which T is subnormal, the above result was proved in [2].

For any simple closed curve C, not necessarily having zero Lebesgue plane measure, denote its open interior by $\text{int}(C)$ and its open exterior by $\text{ext}(C)$. The following generalizes a result of [10].

Theorem 2. Let T be polynomially hyponormal. Let C be a simple closed curve such that
and suppose that
\[(1.8)\quad \{\text{sp}(T) \cap C\} - \{\text{sp}(T) \cap \text{int}(C)\}^- \neq \emptyset.\]

Then T has a normal part, so that (1.3) holds.

It may be noted that if T is supposed only to be hyponormal, rather than polynomially hyponormal, then T may be completely hyponormal even though its spectrum is a subset of a simple closed curve; see \([10]\). In fact, T can be chosen so that \(T^*T - TT^*\) has rank one and hence is even irreducible; cf. \([10], [11]\).

A dual of Theorem 2 is the following.

\textbf{Theorem 2'.} Let T be hyponormal and invertible and suppose that \(T^{-1}\) is polynomially hyponormal. Let C be a simple closed curve for which
\[(1.7)'\quad \text{sp}(T) \subseteq \{C \cup \text{ext}(C)\}\]
and
\[(1.8)'\quad \{\text{sp}(T) \cap C\} - \{\text{sp}(T) \cap \text{ext}(C)\}^- \neq \emptyset.\]

Then T has a normal part.

The above is of course a corollary of Theorem 2 by virtue of the mapping \(w = 1/z\).

\section{Proof of Theorem 1.}

In view of (1.2) it is clear that one can choose concentric open disks \(D_1 \subset D_2 \subset D\) centered at \(z_0\) with corresponding radii \(r_1 < r_2 < r\) and such that \(\text{sp}(T) \cap D_i \neq \emptyset\). Let \(A\) denote the closed annulus with hole \(D\) and outer radius so large that \(A\) contains that part of \(\text{sp}(T)\) lying outside \(D\). Then put \(Y = A \cup \{\text{sp}(T) \cap \bar{D}\}\). Let \(f(z)\) be defined by; \(f(z) = 1\) on \(\bar{D}\), \(f(z) = (R-r)/(r_1-r_2)\) if \(|z-z_0| = R\) and \(r_1 < R < r_2\), and \(f(z) = 0\) outside \(D_r\). Thus \(f\) is continuous in the plane and, in particular, \(f|_Y \in C(Y)\). Further, in view of (1.6), it is clear that \(f|_Y\) is locally in \(R(Y)\) so that, by Bishop's theorem (see Gamelin \([4],\) p. 51 or Zalcman \([15],\) p. 124), \(f|_Y \in R(Y)\). (Cf. the similar argument in \([2]\).)

Hence there exists a sequence \(\{r_n(z)\}, n = 1, 2, \ldots,\) of rational functions in \(R(Y)\) converging uniformly on \(Y\) to \(f(z)\). Since \(\text{sp}(T)\), hence also \(Y\), is a spectral set of \(T\), it follows that \(\{r_n(T)\}\) converges in the uniform topology to an operator \(f(T)\). If \(\mathcal{D}\) is defined by
\[(2.1)\quad \mathcal{D} = (f(T)\mathcal{D})^-,
\]
then clearly \(\mathcal{D}\) is invariant under \(T\). Let \(T_0 = T|_{\mathcal{D}}\).

Next, we show that \(\mathcal{D}\) reduces \(T\). By von Neumann \([8],\) p. 266, the image of \(\text{sp}(T)\) under \(f\) is a spectral set of \(f(T)\). But this set is real, so that by
von Neumann's theorem $f(T)$ is self-adjoint. Since T commutes with $f(T)$, so also does T^*, and hence T_0 reduces T. Since $\|r_n(T)-f(T)\| \to 0$ and, by the spectral mapping theorem, $sp(r_n(T))=r_n(sp(T))$, it follows that $sp(f(T)) \supset f(sp(T)) \neq \{0\}$, so that, in particular, $\mathfrak{H}_0 \neq 0$-space. (Since $f(sp(T))$ is a spectral set of $f(T)$ then, in fact, $sp(f(T))=f(sp(T))$.) Thus,

\begin{equation}
T = T_1 \oplus T_0, \quad T_0 = T|_{\mathfrak{H}_0}.
\end{equation}

It will next be shown that T_0 is normal.

Since the spectrum of T is a spectral set it follows that for every $x \neq 0$ in \mathfrak{H} there is a positive measure $\mu[x, x]$ supported on $sp(T)$ such that

\begin{equation}
\langle g(T)x, x \rangle = \int_{sp(T)} g(t)d\mu[x, x]
\end{equation}

for every g in $R(sp(T))$; see Lebow [6], pp. 70-71. Since $zf(z)$ is in $R(sp(T))$, just as $f(z)$, there exists a sequence $\{s_n(z)\}$ of functions in $R(sp(T))$ converging uniformly to $zf(z)$ and hence $\{s_n(T)\}$ converges uniformly to an operator S. By (2.3),

\begin{equation}
(Sx, x) = \int_{sp(T)} f(t)d\mu[x, x] = (\int_{sp(T)} f(t)d\mu[x, x])^* = \langle f(T)Tx, x \rangle
\end{equation}

(cf. Lebow [6], p. 73). Hence $S = T* f(T)$ and so $T* f(T)$ commutes with T. Since $f(T)$ also commutes with T, then $T* T f(T) = T* f(T) T = T T* f(T)$, so that T_0 is normal, and the proof of Theorem 1 is complete.

3. Lemma. Let $\{T_n\}$ be a sequence of hyponormal operators converging uniformly to the (hyponormal) operator T, so that

\begin{equation}
\|T_n - T\| \to 0 \quad \text{as} \quad n \to \infty.
\end{equation}

Then $z \in sp(T)$ if and only if there exists a sequence $\{z_n\}$, $z_n \in sp(T_n)$, such that $z_n \to z_0$.

Proof. The "if" part clearly holds for any bounded operators T_n, T satisfying (3.1). In order to prove the "only if," let $z \in sp(T)$. If the assertion is false, then there exists a constant $\delta > 0$ and a sequence $\{n_k\}$ of positive integers satisfying $n_1 < n_2 < \cdots$ for which $sp(T_{n_k}) \cap \{z : |z - z_0| < \delta\} = \emptyset$. Since T_{n_k} is hyponormal, then $\|(T_{n_k} - z_0)Ix\| \geq \|(T_{n_k} - z_0)I* x\| \geq \delta \|x\|$ for all x in \mathfrak{H}. On letting $n_k \to \infty$, one obtains similar inequalities with T_{n_k} replaced by T, so that $z \not\in sp(T)$, a contradiction.

4. Proof of Theorem 2. By the Riemann mapping theorem, the set $C \cup \text{int}(C)$ can be mapped homeomorphically onto $|w| \leq 1$ by $w = f(z)$, where $f(z)$ is analytic in $\text{int}(C)$. By Mergelyan's theorem ([7]) there exist polyno-
mials \(\{p_n(z)\} \), \(n = 1, 2, \ldots \), such that \(p_n(z) \to f(z) \) uniformly on \(C \cup \text{int}(C) \). Since the operators \(p_n(T) \) are hyponormal, then \(p_n(T) \) converges in the uniform topology to a hyponormal operator \(f(T) \). According to the spectral mapping theorem, \(sp(p_n(T)) = p_n(sp(T)) \) and it now follows from the Lemma that \(sp(f(T)) = f(sp(T)) \). Further, if \(z_1 \) is in the set of (1.8), then \(f(z_1) \) is in \(sp(f(T)) \cap C' \), where \(C' = \{ w : |w| = 1 \} \), and \(f(z_1) \) is not in the closure of \(sp(f(T)) \cap \text{int}(C') \). It follows from [9] that \(f(T) \) has a normal part \(M = f(T) \prod \Phi_0 \), \(\Phi_0 \neq 0 \), so that \(f(T) = S \oplus M \), where \(M \) is normal on \(\Phi_0 \neq 0 \). Since Mergelyan's theorem can be used again (cf. [10]) to recover \(T \) as \(T = g(f(T)) = g(S) \oplus g(M) \), where \(g \) is the inverse of \(f \), it follows that \(g(M) \) is also normal (on \(\Phi_0 \)) and the proof is complete.

Acknowledgment. We are indebted to J. G. Stampfli for helpful conversations concerning some of the results of this paper.

University of Georgia

Purdue University

References
