On unramified abelian extensions of a complete field
under a discrete valuation with arbitrary residue
field of characteristic $p \neq 0$ and its application
to wildly ramified \mathbb{Z}_p-extensions

By Hiroo MIKI\footnote{Partly supported by Fujukai Foundation.}

(Received Dec. 5, 1974)
(Revised Sept. 30, 1975)

Introduction.

Let k be a complete field under a discrete valuation with residue field \bar{k}
of characteristic $p \neq 0$. In this paper we shall state a theory of unramified
abelian extensions of k (see the main theorem below) and apply this result to
fully ramified \mathbb{Z}_p-extensions of k (see § 4, Theorem 4, Remarks 1 and 2).

The main result of this paper is as follows.

Fix a fully ramified cyclic extension k' of k of degree m, and for a finite
unramified extension K of k, put

$$G^*(K) = N_{K'/K}(U_{K'}) \cap k/N_{k'/k}(U_k),$$

where $K' = Kk'$ and U_k is the group of units of k. Put $W(k'/k) = \bigcup G^*(K)$,
where the union is taken in $U_k/N_{k'/k}(U_k)$ over all finite unramified extensions
K of k. Let \mathcal{F}_m be the set of all finite abelian unramified extensions K of k
such that $\sigma^m = 1$ for all $\sigma \in G(K/k)$, where $G(K/k)$ is the Galois group of K/k,
and let $\hat{W}(k'/k)$ be the set of all finite subgroups of $W(k'/k)$. Then we have the following

Main Theorem.\footnote{We found this theorem to simplify the proof of [5], § 6, Theorem and its
Corollary 2, which is the original form of Theorem 4 in this paper. Our first motiva-
tion of [5] was to consider the problem of finding the class field theory of $\mathbb{Q}(t)_p$ (see
Ihara [2]).} Under the above assumptions, the following statements
(1) and (2) are valid:

1. If $K \in \mathcal{F}_m$, then $G^*(K)$ is canonically isomorphic to the character group
 of $G(K/k)$.
2. \mathcal{F}_m corresponds bijectively to $\hat{W}(k'/k)$ by $K \rightarrow G^*(K)$. Moreover, we have
 $G^*(K_1) \subset G^*(K_2)$ if and only if $K_1 \subset K_2$ for $K_1, K_2 \in \mathcal{F}_m$.

* Partly supported by Fujukai Foundation.
This theorem can be regarded as an analogue of the theory of Kummer extensions and Witt theory \([10]\) and it contains both of them essentially. When \(m \equiv 0 \pmod{p}\), this is equivalent to Kummer theory; when \(m\) is a power of \(p\), it is equivalent to Witt theory \([10]\) essentially. However, our formulation is more useful for our application. For \(W(k'/k)\), see the Remarks at the end of §3.

Table of Contents

§ 1. Norm groups
§ 2. Canonical isomorphism
§ 3. Proof of the main theorem
§ 4. Application

Notations.

(1) \((\text{For a complete field } k \text{ under a discrete valuation})\) \(\text{ord}_k\): the normalized additive valuation of \(k\). \(\mathcal{O}_k\): the ring of integers of \(k\). \(U_k\): the group of units of \(k\). \(U_k^i = \{u \in U_k \mid \text{ord}_k(u-1) \geq i\}\) for \(i \geq 1\). \(\bar{k}\): the residue field of \(k\). \(\bar{a}\) (for \(a \in \mathcal{O}_k\)): the image of \(a\) by the canonical homomorphism of \(\mathcal{O}_k\) to \(\bar{k}\).

(2) \(\mathbb{Z}\): the ring of rational integers. \(\mathbb{Z}_p\): the ring of \(p\)-adic integers. \(\mathbb{Q}_p\): the field of \(p\)-adic numbers. \(N = \{z \in \mathbb{Z} \mid z \geq 1\}\). \(m|n\): \(m\) divides \(n\) for \(m, n \in \mathbb{N}\).

(3) \(K^*\): the multiplicative group of a field \(K\). \(G(K/k)\): the Galois group of a Galois extension \(K/k\). \(\text{Hom}(G_1, G_2)\): the group of homomorphisms of a group \(G_1\) to an abelian group \(G_2\). \(N_{K/k}\): the norm map of \(K\) to \(k\) for a finite Galois extension \(K\) of \(k\). \([G, G]\): the commutator group of a group \(G\). \(\langle u \rangle\) or \(\langle u \mid u \in S \rangle\): the subgroup of a group \(G\), generated by \(u \in G\) or by a subset \(S\) of \(G\) respectively. \#(\(S\)): the number of elements of a finite set \(S\). \(\text{Ker } F\) (for a homomorphism \(F\) of a group \(G\) to a group \(G'\)): the kernel of \(F\). \(\text{Im } F\): the image of \(F\).

§ 1. Norm groups.

In this section we shall prove the following Theorem 1, which will be used for the proof of Theorem 2. When \(\bar{k}\) is finite, Theorem 1 is well known (e.g. Artin-Tate \([1]\), Chap. XI, §4 and Iyanaga \([3]\), Chap. V, §2). However, its proof is not valid for arbitrary residue field \(\bar{k}\). We use Sen \([7]\), Lemma 1 and Serre \([8]\), Chap. V.

Theorem 1. Let \(k\) be a complete field under a discrete valuation with residue field of characteristic \(p \neq 0\) and let \(k'\) be a finite fully ramified cyclic extension of \(k\). Then we have \(N_{k'/k}(U_k') = N_{k'/k}(U_k') \cap U_k\) for each \(i, j \in \mathbb{N}\) such that \(\phi(i-1) < j \leq \phi(i)\), where \(\phi\) is the Hasse function of \(k'/k\).
We need also the following

Lemma 1. Let \(p \) and \(k \) be as in Theorem 1 and let \(k_n \) be a fully ramified cyclic extension of \(k \) of degree \(p^n \). Let \(t_1 < t_2 < \cdots < t_n \) be the sequence of all the ramification numbers of \(k_n/k \). Let \(\phi : k_n/k \) be the Hasse function of \(k_n/k \). Put \(S_1 = \{ N \in \mathbb{N} | N \neq \phi(m) \text{ for all } m \in \mathbb{N} \text{ and } N < t_\alpha \} \) and \(S_2 = \{ N \in \mathbb{N} | N = t_\beta + mp^{t_\beta-1} \text{ with } 1 \leq j < n, m \equiv 0 \pmod{p}, m \in \mathbb{N} \text{ and } N < t_\beta \} \). Then \(S_1 = S_2 \).

Proof. Let \(s_i \) be such that \(\phi(s_i) = t_i \) for \(i = 1, 2, \ldots, n \) and let \(t_0 = s_0 = 0 \). By Hasse-Arf’s theorem, \(s_i \in \mathbb{Z} \). Then we have easily \(S_1 = \{ N \in \mathbb{N} | N \neq s_i + (m_i - s_i)p^i \text{ for } s_i \leq m_i \in \mathbb{Z} < s_{i+1} \text{ and } i = 0, 1, \ldots, n-1 \} \). Now let \(N \in S_2 \). Then \(N = t_\beta + mp^{t_\beta-1} \) \(\text{with } 1 \leq j < n, m \equiv 0 \pmod{p} \text{ and } m \in \mathbb{N} \). Let \(i \in \mathbb{N} \) be such that \(t_i \leq N < t_{i+1} \).

Since \(N > t_j \), we have \(j \leq i \leq n-1 \). If \(N \in S_1 \), then \(N = t_i + s_j p^j \) with \(0 \leq s_i < s_{i+1} - s_i \text{ and } s \in \mathbb{Z} \). Since \(t_i - t_j \equiv 0 \pmod{p} \text{ and } i \geq j \), this implies that \(mp^{t_\beta-1} \equiv 0 \pmod{p} \text{ hence } m \equiv 0 \pmod{p} \text{, which is a contradiction, hence } N \in S_2 \). Hence \(S_2 \subseteq S_1 \).

Conversely let \(N \in S_2 \). If \(N \in S_2 \), then \(N = t_j + m_j p^j \) \(\text{with } 1 \leq j \leq n-1, m_j \in \mathbb{Z} \text{ and } m_j \geq 0 \). Let \(j_0 \) be the maximum of such \(j \), then we have easily \(t_{j_0} \leq N < t_{j_0+1} \).

This implies that \(N \in S_2 \), which is a contradiction, hence \(N \in S_1 \). Hence \(S_1 \subseteq S_2 \).

Therefore \(S_1 = S_2 \).

Lemma 2. Let notations be as in Lemma 1 and let \(\sigma \) be a generator of \(G(k_n/k) \). Let \(N \in \mathbb{N} \) be such that \(N \neq \phi(m) \text{ for all } m \in \mathbb{N} \text{ and } N < t_\alpha \) and let \(A \in k_n \) be such that \(\text{ord}_{k_n}(A) = N \). Then there exists \(x \in U_{k_n}^{(1)} \) such that \(x^{p^{t_\beta-1}+1} = 1 + A \pmod{\pi_n^{t_\beta+1}} \), where \(\pi_n \) is a prime element of \(k_n \).

Proof. By Lemma 1, \(N = t_i + mp^{t_\beta-1} \) \(\text{with } 1 \leq j < n, m \equiv 0 \pmod{p} \text{ and } m \in \mathbb{N} \). By Sen [7], Lemma 1, there exists \(y \in k_n^* \) such that \(\text{ord}_{k_n}(y^p - y) = N \). For \(\lambda \in U_n \), put \(z_\lambda = 1 + \lambda y \) and \(B = y^\sigma - y \), then \(z_\lambda^\sigma - z_\lambda = \lambda B \), hence \((z_\lambda)^{p^{t_\beta-1}} - 1 + \lambda B \pmod{\pi_n^{t_\beta+1}} \). There exists \(\lambda \in U_n \) such that \(\text{A} = \lambda B \pmod{\pi_n^{t_\beta+1}} \).

For this \(\lambda \in U_n \), put \(x = z_\lambda \), then the assertion follows.

Now we can prove Theorem 1.

Proof of Theorem 1. It is easily verified that it is enough to prove the theorem when \(k' = k_n \) where \(k_n \) is as in Lemma 1. By Serre [8], Chap. V, § 6, Proposition 8, \(N_{k_n/k}(U_{k_n}^{(1)}) \subseteq N_{k_n/k}(U_{k_n}^{(j)}) \cap U_{k_n}^{(0)} \). By Serre [8], Chap. V, § 6, Corollary 3, we may suppose \(\phi(t) \leq t_\alpha \). Now conversely let \(N_{k_n/k}(z) \subseteq N_{k_n/k}(U_{k_n}^{(j)}) \cap U_{k_n}^{(0)} \) with \(z \in U_{k_n}^{(j)} \). Then by Lemma 2 and Serre [8], Chap. V, § 6, Proposition 9, there exists \(z_i \in k_n^* \) such that \(z \cdot z_i^{t_\alpha} \in U_{k_n}^{(j)} \), hence \(N_{k_n/k}(z) = N_{k_n/k}(z \cdot z_i^{t_\alpha}) \subseteq N_{k_n/k}(U_{k_n}^{(j)}) \).

§ 2. Canonical isomorphism.

In this section we shall prove the following Theorem 2 and Corollaries to Theorem 2, which will be used for the proof of the main theorem. The statement (1) of the main theorem is an immediate consequence of Theorem 2 (see
Corollary 1 to Theorem 2).

Theorem 2. Let \(k \) be a complete field under a discrete valuation with residue field of characteristic \(p \neq 0 \) and let \(k'/k \) be a finite fully ramified cyclic extension. Let \(K/k \) be a finite unramified Galois extension and put \(K'=Kk' \), \(T_K=\{y^{s-1}|y\in K'\} \), \(V_K=\{y^{s-1}|y\in U_K\} \), \(G^*(K)=N_{K'/K}(U_K)\cap k/N_{K'/k}(U_k) \) and \(G=G(K/k) \), where \(s \) is a generator of \(G(K'/K) \). Then there exists a canonical isomorphism \(F_K: G^*(K)\to \text{Hom}(G, T_K/V_K) \).

2.1. Proof of Theorem 2.

For the proof of Theorem 2 we need Theorem 1 and the following two lemmas.

Lemma 3. Let \(k \) and \(K \) be two complete fields under a discrete valuation and let \(k'/k \) be a finite fully ramified cyclic extension. Suppose that \(K \) is an extension of \(k \) with ramification index 1. Put \(K'=Kk' \). Let \(T_K, V_K, T_{K'} \) and \(V_{K'} \) be as in Theorem 2. Then the following (1), (2), (3) are valid:

1. (Serre [8], p. 104, Exercise.) \(G(k'/k)\cong T_{k'}/V_{k'} \) by \(\sigma\to (\pi'\sigma^{-1} \mod V_{k'}) \), where \(\pi' \) is a prime element of \(k' \).
2. \(T_{k'}/V_{k'} \cong T_K/V_K \) by \((x \mod V_{k'})\to (x \mod V_K) \), where \(x\in T_K \).
3. \(V_{x'}\cap T_{k'}=V_{k'} \).

Proof. Since \(\pi' \) is also a prime element of \(K' \), it follows from the statement (1) that \((\pi'\sigma^{-1} \mod V_{k'}) \) generates \(T_{k'}/V_{k'} \), where \(s \) is a generator of \(G(K'/K) \). Therefore the given homomorphism in the statement (2) is surjective, hence bijective by (1). The statement (2) implies the statement (3).

Lemma 4. Let \(k, k', K, K', V_K \) and \(G \) be as in Theorem 2. Let \(u\in U_k\cap N_{K'/K}(U_{K'}) \) and \(A\in U_{k'} \) be such that \(N_{K'/K}(A)=u \). Suppose that \(A^{\sigma-1}\in V_K \) for all \(\sigma\in G \), identifying \(G \) and \(G(K'/k) \). Then \(u\in N_{k'/k}(U_{k'}) \).

Proof. Since \(V_K\subset U_{k'} \), we have \(\bar{\bar{A}}^\sigma=\bar{\bar{A}} \) for all \(\sigma\in G \), hence \(A=aA_1 \) with \(a\in U_k \) and \(A_1\in U_{k'} \), since \(K'/k' \) is unramified. Therefore we may suppose that \(A\in U_{k'}^{[m]} \) from the beginning. Suppose that \(u\in U_{k'}^{[m]} \) with some \(m\geq 1 \). By applying Theorem 1 to \(K'/K \), we may suppose that \(A=1+\lambda \pi\phi(m) \mod \pi\phi(m)+1 \), where \(\pi' \) is a prime element of \(k' \), \(\phi \) is the Hasse function of \(K'/K \) and \(\lambda\in \mathcal{O}_{K'} \). Then \(A^{\sigma-1}=1+(\lambda^s-\lambda)\pi\phi(m) \mod \pi\phi(m)+1 \). Since \(V_K\cap U_{k'}^{[m]}\subset U_{k'}^{[m+1]} \) (see Serre [7], p. 104, Ex. a)), we have \(\bar{\bar{A}}^\sigma=\bar{\bar{A}} \) for all \(\sigma\in G \), hence we can take \(\lambda \) in \(\mathcal{O}_{k'} \). Put \(B=(1-\lambda \pi\phi(m))A \). Then \(B\in U_{k'}^{(m+1)} \), \(A^{\sigma-1}=B^{\sigma-1}\in V_K \), and \(N_{K'/K}(B)\in U_{k'}^{[m+1]} \) by Serre [8], Chap. V, Proposition 8. Applying the above procedure to \(B \), we have \(u\in N_{k'/k}(U_{k'}) \) by induction on \(m \).

Proof of Theorem 2. Identify \(G \) with the Galois group \(G(K'/k') \). For \(u\in N_{K'/K}(U_K)\cap k \) and \(\sigma\in G \), put \(f_u(\sigma)=A^{\sigma-1} \mod V_K \), where \(A\in U_K \) is such that \(N_{K'/K}(A)=u \). It is easily verified that \(f_u(\sigma)\in T_{K'}/V_{K'} \) and that \(f_u(\sigma) \) is independent of the choice of \(A \) and that \(f_u\in \text{Hom}(G, T_{K'}/V_{K'}) \). Put \(F_K(u)=f_u \), then it is easily verified that \(F_K \) is a homomorphism of \(N_{K'/K}(U_K)\cap k \) to
Unramified abelian extensions of a complete field

Horn (G, TK/VK). By Lemma 4, Ker $F_K = N_{k'/k}(U_K)$. Now we shall show that F_K is surjective. Let $x \in \text{Hom}(G, TK/VK)$. Let L' be the subfield of K' fixed by Ker x and put $L = L' \cap K$. Let $\sigma_i \in G$ be such that $x(\sigma_i)$ generates $\text{Im} x$. By (2) of Lemma 3, $x(\sigma_i)^d = x^{d^{-1}} \mod V_K$, with some $x \in k''$. If $d = [L' : k']$, then $x(\sigma_i)^d = 1$, hence $(x^{d^{-1}})^{m'} = 1$. If $d = [L' : k']$, then $x(\sigma_i)^d = 1$, hence $(x^{d^{-1}})^{m'} = 1$. If $d = [L' : k']$, then $x(\sigma_i)^d = 1$, hence $(x^{d^{-1}})^{m'} = 1$. If $d = [L' : k']$, then $x(\sigma_i)^d = 1$, hence $(x^{d^{-1}})^{m'} = 1$. If $d = [L' : k']$, then $x(\sigma_i)^d = 1$, hence $(x^{d^{-1}})^{m'} = 1$. If $d = [L' : k']$, then $x(\sigma_i)^d = 1$, hence $(x^{d^{-1}})^{m'} = 1$. If $d = [L' : k']$, then $x(\sigma_i)^d = 1$, hence $(x^{d^{-1}})^{m'} = 1$. If $d = [L' : k']$, then $x(\sigma_i)^d = 1$, hence $(x^{d^{-1}})^{m'} = 1$. If $d = [L' : k']$, then $x(\sigma_i)^d = 1$, hence $(x^{d^{-1}})^{m'} = 1$. If $d = [L' : k']$, then $x(\sigma_i)^d = 1$, hence $(x^{d^{-1}})^{m'} = 1$. If $d = [L' : k']$, then $x(\sigma_i)^d = 1$, hence $(x^{d^{-1}})^{m'} = 1$. If $d = [L' : k']$, then $x(\sigma_i)^d = 1$, hence $(x^{d^{-1}})^{m'} = 1$. If $d = [L' : k']$, then $x(\sigma_i)^d = 1$, hence $(x^{d^{-1}})^{m'} = 1$. If $d = [L' : k']$, then $x(\sigma_i)^d = 1$, hence $(x^{d^{-1}})^{m'} = 1$. If $d = [L' : k']$, then $x(\sigma_i)^d = 1$, hence $(x^{d^{-1}})^{m'} = 1$. If $d = [L' : k']$, then $x(\sigma_i)^d = 1$, hence $(x^{d^{-1}})^{m'} = 1$. If $d = [L' : k']$, then $x(\sigma_i)^d = 1$, hence $(x^{d^{-1}})^{m'} = 1$. If $d = [L' : k']$, then $x(\sigma_i)^d = 1$, hence $(x^{d^{-1}})^{m'} = 1$. If $d = [L' : k']$, then $x(\sigma_i)^d = 1$, hence $(x^{d^{-1}})^{m'} = 1$. If $d = [L' : k']$, then $x(\sigma_i)^d = 1$, hence $(x^{d^{-1}})^{m'} = 1$. If $d = [L' : k']$, then $x(\sigma_i)^d = 1$, hence $(x^{d^{-1}})^{m'} = 1$. If $d = [L' : k']$, then $x(\sigma_i)^d = 1$, hence $(x^{d^{-1}})^{m'} = 1$. If $d = [L' : k']$, then $x(\sigma_i)^d = 1$, hence $(x^{d^{-1}})^{m'} = 1$. If $d = [L' : k']$, then $x(\sigma_i)^d = 1$, hence $(x^{d^{-1}})^{m'} = 1$. If $d = [L' : k']$, then $x(\sigma_i)^d = 1$, hence $(x^{d^{-1}})^{m'} = 1$. If $d = [L' : k']$, then $x(\sigma_i)^d = 1$, hence $(x^{d^{-1}})^{m'} = 1$.

2.2. Corollaries to Theorem 2.

In this section we shall state the Corollaries to Theorem 2. The Corollary 1 is the statement (1) of the main theorem in the introduction. Corollaries 2 and 3 will be used for the proof of (2) of the main theorem.

Corollary 1. Let notations and assumptions be as in Theorem 2. Put $m = [k' : k]$. Suppose moreover that $\sigma^m = 1$ for all $\sigma \in G$. Let $\tau(G)$ be the character group of G. Then $G^*(K)$ is isomorphic to $\tau(G)$.

Proof. Since TK/VK is a cyclic group of order m by (1) of Lemma 3, by assumption $\text{Hom}(G, TK/VK) \cong \tau(G)$. Hence the assertion follows from Theorem 2.

Corollary 2. Let notations and assumptions be as in Theorem 2. Put $m = [k' : k]$. Let L be the maximal abelian extension of k in K such that $\sigma^m = 1$ for all $\sigma \in G$. Then $G^*(L) = G^*(K)$.

Proof. It is trivial that $G^*(K) \subseteq G^*(L)$. Let $H = [G, G] \langle g^m | g \in G \rangle$, then L is the subfield of K fixed by H. It is clear that $G^*(K) \cong \text{Hom}(G, TK/VK)$. Hence by Theorem 2, $\#(G^*(K)) = \#(G^*(L))$, so $G^*(K) = G^*(L)$.

Corollary 3. Let K_1, K_2 be two finite unramified Galois extensions of k such that $K_1 \supseteq K_2$ and put $G_1 = G(K_1/k)$. Let $G^*(K_1), T_{K_1}$, and V_{K_1} be as in Theorem 2, where $K'_1 = K_1 k'$, and let $F_{K_1} : G^*(K_1) \rightarrow \text{Hom}(G_1, T_{K_1}/V_{K_1})$ be the canonical isomorphism defined in Theorem 2. Then $F_{K_1}(G^*(K_1)) = G(K_1/k_2)$. Let $F_{K_2} : G^*(K_2) \rightarrow \text{Hom}(G_1, T_{K_2}/V_{K_2})$ be the canonical isomorphism defined in Theorem 2. Then $F_{K_2}(G^*(K_2)) = G(K_1/k_2)$. Hence by Theorem 2, $\#(F_{K_1}(G^*(K_1))) = \#(G(K_1/k_2))$. Therefore we have the assertion.
§ 3. Proof of the main theorem.

Noting the similarity of Theorem 2 to Kummer theory, we shall prove the statement (2) of the main theorem in the introduction. For the proof we use Theorem 2, Corollaries 1, 2 and 3 to Theorem 2 and the duality of finite abelian groups.

Proof of the main theorem. The statement (1) of the main theorem is already proved in Corollary 1 to Theorem 2. By Theorem 2, if $K \in \mathcal{F}_n$, then $G^*(K) \subseteq \mathcal{W}(k'/k)$.

Existence: Let $M \in \mathcal{W}(k'/k)$. Then by the definition of $\mathcal{W}(k'/k)$, $G^*(K) \supset M$ for some finite unramified extension K of k. By taking the Galois closure of K over k, we may suppose that K/k is Galois. Moreover by Corollary 2 to Theorem 2, we may suppose that $K \in \mathcal{F}_n$ from the beginning. Since $K \in \mathcal{F}_n$ by Corollary 1 to Theorem 2, we can regard $\text{Hom}(G(K,k), T_{K_i}/V_{K_i})$ as the character group of $G(K/k)$. Put $H^*=F_{K_1}(M)$, where F_{K_1} is the canonical isomorphism of $G^*(K)$ to $\text{Hom}(G(K,k), T_{K_i}/V_{K_i})$, defined in Theorem 2. Let H be the subgroup of $G(K,k)$ corresponding to H^* by the duality of finite abelian groups. Then $H^* = \{ f \in \text{Hom}(G(K,k), T_{K_i}/V_{K_i}) | f=1 \text{ on } H \}$. Let K be the subfield of K_1 fixed by H, then $K \in \mathcal{F}_n$ and $F_{K_1}(M)=F_{K_1}(G^*(K))$ by Corollary 3 to Theorem 2, hence $M=G^*(K)$ by Theorem 2.

Uniqueness: Let $K_1, K_2 \in \mathcal{F}_n$ be such that $G^*(K_1) \supset G^*(K_2)$. Put $K=K_1 \cdot K_2$, $G=G(K/k)$ and $G_i=G(K/K_i)$ for $i=1,2$. Let $F_K: G^*(K) \rightarrow \text{Hom}(G, T_{K_i}/V_{K_i})$ be the canonical isomorphism defined by Theorem 2. By Corollary 3 to Theorem 2, $F_K(G^*(K)) = \{ f \in \text{Hom}(G, T_{K_i}/V_{K_i}) | f=1 \text{ on } G_i \}$ for $i=1,2$. Since $K \in \mathcal{F}_n$, by Corollary 1 to Theorem 2 $\text{Hom}(G, T_{K_i}/V_{K_i})$ is isomorphic to the character group of G. Then by the duality of finite abelian groups, $G^*(K_1) \supset G^*(K_2)$ implies $G_1 \subseteq G_2$, so $K_1 \subseteq K_2$. In particular, $G^*(K_1)=G^*(K_2)$ implies $K_1=K_2$.

Remark 1. Let k be a complete field under a discrete valuation v with arbitrary residue field \overline{k} of characteristic $p \neq 0$ and assume that p is a prime element of k. Let k_0 be the subfield of k satisfying the conditions: (i) k_0 is complete with respect to the restriction of v to k; (ii) the residue field \overline{k}_0 is the maximum perfect subfield of \overline{k}, i.e., $\overline{k}_0 = \bigcap_{n=1}^{\infty} (\overline{k})^{p^n}$. By MacLane [4], such a k_0 really exists. Let k_0^n/k_0 be a fully ramified cyclic extension of degree p^n and put $k_n = k_0^n \cdot k$. Then it can be proved that $W(k_0^n/k) = H_n(k)/N_{k_0^n/k}(U_{k_0^n}),$ where $H_n(k) = \{ x \in U_k | x = \sum_{i=0}^{n-1} \lambda_i \cdot k_0^{i} \cdot p^i \text{ (mod } p^{n+1}) \}$ with $\lambda_i \in \mathcal{O}_k$.

Remark 2. If k is perfect, then $W(k'/k) = U_k/N_{k'/k}(U_k)$. Hence the main theorem in the introduction gives an interpretation of a quotient group $U_k/N_{k'/k}(U_k)$; it can be regarded as the character group of the Galois group $G(K_m/k)$, where K_m is the composite field of all fields in \mathcal{F}_m.

In this section, we shall apply the main theorem to fully ramified cyclic extensions and \mathbb{Z}_p-extensions of k.

Lemma 5. Let k be a complete field under a discrete valuation. Let k_1, k_2 be two finite fully ramified abelian extensions of k such that $k_1L=k_2L$ with an extension L/k of ramification index 1 (i.e., a prime element of k is a prime element of L). Suppose that $N_{k_1/k}(k_1)\cap N_{k_2/k}(k_2)$ contains a prime element of k. Then $k_1=k_2$.

Proof. We may suppose that k_i/k is cyclic and that L is a Galois extension of k, by taking the Galois closure of L over k. Since $k_i(L)/k$ is cyclic, we may suppose $L\subset k, k_2$. Put $Lk_1=Lk_2=L_1$ and let s be a generator of $G(L_1/L)$. By assumption, there exist prime elements π_i of k_i such that $N_{k_1/k}(\pi_1)=N_{k_2/k}(\pi_2)$. Put $u=\pi_1/\pi_2$, then $u\in U_{L_1}$ and $N_{L_1/k}(u)=1$. Hence $y^{s-1}=u$ with $y\in L_1^*$. Now suppose $k_1\neq k_2$. Then there exists $\sigma\in G(L_1/k_1)$ such that $\sigma|k_1\neq 1$. By the statement (1) of Lemma 3, $\pi_1^{s-1}\in V_{k_1}$, hence by the statement (3) of Lemma 3, $\pi_2^{s-1}\in V_{k_2}$. On the other hand, $\pi_2^{s-1}=\sigma^{s-1}=(y^{s-1})^{s-1}\in V_{L_1}$, which is a contradiction. Therefore $k_1=k_2$.

Lemma 6. Let k be as in Lemma 5 and let k_1, k_2 be two finite fully ramified Galois extensions of k such that $k_iL=k_iL$ with a finite unramified extension L/k. Then $N_{k_1/k}(U_{k_1})=N_{k_2/k}(U_{k_2})$.

Proof. By taking the Galois closure of L over k, we may suppose that L is a Galois extension of k. Put $L'=Lk_1=Lk_2$. Since L'/k_i is unramified, we have $N_{L'/k}(U_{L'})=U_{L'}$. Since k_i/k is fully ramified and $[k_1:k]=[k_2:k]$, we have the assertion.

Theorem 3. Let k, k' and $W(k'/k)$ be as in the main theorem in the introduction. Let $\mathcal{F}=\mathcal{F}(k')=\{k^*| k^* is a fully ramified cyclic extension of k such that $k^*L=k^*L$ with an unramified extension L of k\}. Let $F_k: \mathcal{F}=W(k'/k)$ be a map defined by $k^*/k^*=\langle \pi^* \rangle$ of k^*, where π' and π'' are prime elements of k' and k'' respectively. Then F_k is bijective and independent of the choice of π' and π''.

Proof. By Lemma 6, F_k is independent of the choice of π' and π''.

F_k is injective: Let $k_i\in \mathcal{F}$ with $i=1, 2$. By assumption, $Lk_1=Lk_2=Lk'$ with an unramified extension L of k. Suppose that $F_k(k_1)=F_k(k_2)$. Then by the definition of F_k and by Lemma 6, $N_{k_1/k}(k_1)=N_{k_2/k}(k_2)$. Hence by Lemma 5, $k_1=k_2$. Hence F_k is injective.

F_k is surjective: Let $u\in W(k'/k)$ and let m' be the order of $\langle u \rangle$. Then $m'|m$. By the main theorem, there exists an unramified cyclic extension K/k of degree m' such that $G^*(K)=\langle u \rangle$. Put $K'=Kk'$. By Galois theory, there exist m' cyclic extensions $k_1, \ldots, k_{m'}$ of degree m such that $k^i\neq k_l$ and $k_i\subset K'$.
for $i=1, 2, \ldots, m'$. Clearly $F_{k'}(k_i) \equiv \langle u \rangle$. Since $F_{k'}$ is injective, $F_{k'}(k_i) = u$ with some i. Hence $F_{k'}$ is surjective. This completes the proof.

Now we apply Theorem 3 to \mathbb{Z}_p-extensions of k. Fix a fully ramified \mathbb{Z}_p-extension k_∞ of k, and let k_n/k be the sub-extension of k_∞/k of degree p^n. For $m \geq n \geq 1$, let $\rho_{mn}^\varphi: W(k_m/k) \rightarrow W(k_n/k)$ be a homomorphism defined by $x \mod N_{k_m/k}(U_{k_m}) \rightarrow x \mod N_{k_n/k}(U_{k_n})$ with $x \in N_{k_m/k}(U_{k_m}) \cap k$, where \hat{k}_{ur} is the completion of the maximum unramified extension of k and $k_m = \hat{k}_{ur}k_m$. Then $\{W(k_n/k), \rho_{mn}^\varphi\}$ is a projective system. Let $W(k_\infty)$ be the projective limit of this system. Then we have directly the following Theorem 4 by Theorem 3.

Theorem 4. Let k, p, k_∞ and $W(k_\infty)$ be as above. Let $\mathcal{F}(k_\infty) = \{k'_\infty \mid k'_\infty$ is a fully ramified \mathbb{Z}_p-extension of k such that $k_\infty L = k'_\infty L$ with an unramified extension L of $k\}$. Let $F_{\infty}: \mathcal{F}(k_\infty) \rightarrow W(k_\infty)$ be a map defined by $k' \rightarrow (N_{k'_n/k}(\pi'_n))/N_{k_n/k}(\pi_n) \mod N_{k_n/k}(U_{k_n})$, where k'_n/k and k_n/k are the sub-extensions of k'_∞/k and k_∞/k of degree p^n respectively, and where π'_n and π_n are prime elements of k'_n and k_n respectively. Then F_{∞} is independent of the choice of prime elements and F_{∞} is bijective.

Remark 1. Suppose the conditions: (i) p is a prime element of k, (ii) the finite field F_p with p elements is the maximum perfect subfield of k, i.e., $F_p = \bigcap_{n=1}^{\infty} (k)^{p^n}$. As typical examples, we have k such that $\overline{k} = F_p(t)$ (the rational function field over F_p in one variable t) or $F_p(t)$ (the field of power series over F_p in one variable t). In this case, it is easily verified by [6], Theorem that $\mathcal{F}(k_\infty)$ is the set of all fully ramified \mathbb{Z}_p-extensions of k.

Remark 2. It can be proved that $W(k_\infty) = \varprojlim H_n(k)/N_{k_n/k}(U_{k_n})$ under the above conditions (i), (ii), where $H_n(k)$ is as in the Remark 1 in § 3 and the projective limit is taken with respect to a homomorphism induced by the natural injection of $H_n(k)$ into $H_n(k)$ for $n' \geq n$. Therefore under the above conditions (i), (ii), as a Corollary to Theorem 4, it can be proved that $\bigcap_{n=1}^{\infty} N_{k'_n/k}(k'_n)$ contains a prime element of k if and only if there exists a \mathbb{Z}_p-extension k_c of \mathbb{Q}_p such that $k_\infty = k_c k_c(3)$. Note that $W(k_\infty) = U_k^{(1)}$ if $k = \mathbb{Q}_p$ and that in this case Theorem 4 follows from local class field theory.

References

(2) This can be regarded as a generalization of [5], § 6, Corollary 2 to Theorem.

(3) This is [5], § 6, Corollary 3 to Theorem.
Unramified abelian extensions of a complete field

Hiroo MIKI
Department of Mathematics
University of Tokyo

Present address:
Department of Mathematics
Faculty of Engineering
Yokohama National University
Tokiwadai, Hodogaya-ku
Yokohama, Japan