Compact minimal submanifolds of a sphere with positive Ricci curvature

By Norio EJIRI

(Received June 7, 1977)
(Revised Oct. 20, 1977)

1. Introduction.

Let M be an n-dimensional simply connected compact orientable submanifold minimally immersed in an $(n+p)$-dimensional sphere of constant curvature 1. The pinching problem with respect to the scalar curvature of M [6] [1] and the sectional curvature of M [4] [8] have been studied. In this note, we shall prove a pinching theorem with respect to the Ricci curvature of M. Some examples are:

EXAMPLE 1. In general, let $S^q(r)$ denote a q-dimensional sphere in R^{n+1} with radius r. Let m and n be positive integers such that $m < n$ and let $M_{m,n-m} = S^m(n/m) \times S^{n-m}(n-m/n)$. We imbed $M_{m,n-m}$ into $S^{n+1} = S^{n+1}(1)$ as follows. Let (u, v) be a point of $M_{m,n-m}$, where u (resp. v) is a vector in R^{m+1} (resp. R^{n-m+1}) of length $\sqrt{m/n}$ (resp. $\sqrt{n-m/n}$). We can consider (u, v) as a unit vector in $R^{m+1} \times R^{n-m+1}$. It is easily shown that $M_{m,n-m}$ is a minimal submanifold. Furthermore from the fact the first eigenvalue of the Laplacian of $M_{m,n-m}$ is n and the dimension of the eigenspace is $n+2$, we can prove the following.

Let X be a minimal immersion of $M_{m,n-m}$ into S^{n+p} such that the immersion is full, i.e. $X(M_{m,n-m})$ is not contained in a linear subspace of R^{n+p+1}. Then $p=1$ and the immersion is rigid. The Ricci curvature of $M_{m,n-m}$ varies between $n(m-1)/m$ and $n(n-m-1)/(n-m)$.

EXAMPLE 2. We can define a minimal immersion of an n-dimensional complex projective space $P_2^m/(n+1)$ with holomorphic sectional curvature $2n/(n+1)$ into $S^{n(n+2)-1}$ such that the usual coordinate functions of $R^{n(n+2)}$ are all independent hermitian harmonic functions of degree 1 on $P_2^m/(n+1)$.

N. R. Wallach proved in [7] that if \(X \) is a minimal immersion of \(P_{2n/(n+1)} \) into \(S^{n+p} \) such that the immersion is full, then \(p=n^2-1 \) and the immersion is rigid. The Ricci curvature of \(P_{2n/(n+1)} \) is equal to \(n \).

Theorem. Let \(M \) be an \(n \)-dimensional simply connected compact orientable minimal submanifold immersed in \(S^{n+p} \) such that the immersion is full. If \(n \geq 4 \) and the Ricci curvature of \(M \geq n-2 \), then \(M \) is either \(S^n \) (totally geodesic), \(M_{m,m} \) in \(S^n \) (\(n=2m \)) or \(P_{4/3} \) in \(S^7 \).

The author would like to express his sincere thanks to Professor K. Ogiue for his many valuable suggestions.

2. Preliminaries.

Let \(M \) be an \(n \)-dimensional Riemannian manifold isometrically immersed in an \((n+p) \)-dimensional space form \(\tilde{M} \) of constant curvature \(\tilde{c} \). We denote by \(\nabla \) (resp. \(\tilde{\nabla} \)) the covariant differentiation of \(M \) (resp. \(\tilde{M} \)). Then the second fundamental form \(\sigma \) of the immersion is given by

\[
\sigma(X, Y) = \tilde{\nabla}_XY - \nabla_XY
\]

and it satisfies \(\sigma(X, Y) = \sigma(Y, X) \). We choose a local field of orthonormal frames \(e_1, \ldots, e_n, \tilde{e}_1, \ldots, \tilde{e}_p \) in \(\tilde{M} \) in such a way that, restricted to \(M \), \(e_1, \ldots, e_n \) are tangent to \(M \). With respect to the frame field of \(M \) chosen above, let \(\omega^1, \ldots, \omega^n, \tilde{\omega}^1, \ldots, \tilde{\omega}^p \) be the field of dual frames. Then the structure equations of \(M \) are given by\(^{(*)}\)

\[
\begin{align*}
(2.1) \quad & d\omega^a = -\sum \omega^b \wedge \omega^b, \quad \omega^b_0 + \omega^b_0 = 0, \\
(2.2) \quad & d\omega^a_0 = -\sum \omega^b_0 \wedge \omega^b_0 + \tilde{c} \omega^a \wedge \omega^b.
\end{align*}
\]

Restricting these forms to \(M \), we have the structure equations of the immersion

\[
\begin{align*}
(2.3) \quad & \omega^a = 0 \\
(2.4) \quad & \omega_i^a = \sum h^a_j \omega^j, \quad h_j^a = h_j^a_i \\
(2.5) \quad & d\omega^t = -\sum \omega^j_0 \wedge \omega^i, \quad \omega^t_0 + \omega^t_0 = 0 \\
(2.6) \quad & d\omega^0_j = -\sum \omega^i \wedge \omega^j_0 + \Omega^0_j, \quad \Omega^0_j = \frac{1}{2} \sum R^0_j \omega^k \wedge \omega^k \\
(2.7) \quad & R^a_{jkl} = \tilde{c}(\delta^a_j \delta^l_k - \delta^a_k \delta^l_j) + \sum (h^a_i h^a_j - h^a_i h^a_j).
\end{align*}
\]

\(^{(*)}\) We use the following convention on the ranges of indices unless otherwise stated: \(A, B, C = 1, \ldots, n, \tilde{A}, \ldots, \tilde{p} \); \(i, j, k, t = 1, \ldots, n \); \(a, \gamma = 1, \ldots, \tilde{p} \).
The second fundamental form σ and h_{ij}^α are related by

$$\sigma(e_i, e_j) = \sum h_{ij}^\alpha e_\alpha.$$

Define h_{ik}^α by

$$\sum h_{ik}^\alpha \omega^k = d h_{ik}^\alpha - \sum h_{ik}^\alpha \omega^j - \sum h_{ik}^\alpha \omega^k + \sum h_{ik}^\alpha \omega^l.$$

Then from (2.2), (2.3) and (2.4) we have

$$h_{ik}^\alpha = h_{ik}^\alpha.$$

Then second fundamental form σ is said to be parallel if $h_{ik}^\alpha = 0$ for all i, j, k, α. The second fundamental form σ satisfies a differential equation. In fact we have the following.

Lemma 2.1 ([6]).

$$\frac{1}{2} \Delta (\sum h_{ik}^\alpha h_{ij}^\alpha) = \sum h_{ik}^\alpha h_{ik}^\alpha - \sum (\sum(h_{ik}^\alpha h_{jk}^\alpha - h_{jk}^\alpha h_{ik}^\alpha))^2 - \sum h_{ij}^\alpha h_{ik}^\alpha h_{ik}^\alpha + n \sum h_{ij}^\alpha h_{ij}^\alpha,$$

where Δ denotes the Laplacian.

3. Lemmas.

In general, for a matrix $A=(a_{ij})$ we denote by $N(A)$ the square of the norm of A, i.e. $N(A) = \sum a_{ij}^2$. Clearly, $N(A)=N(T^{-1}AT)$ for any orthogonal matrix T. Now we have

$$\sum (\sum (h_{ik}^\alpha h_{jk}^\alpha - h_{jk}^\alpha h_{ik}^\alpha))^2 = \sum N(A_{ij}A_{ij} - A_{ij}A_{ij}),$$

where $A_{ij}=(h_{ij}^\alpha)$.

Lemma 3.1. $(n \times n)$-symmetric matrix (h_{ij}^α) is positive semi definite. In particular

1. $1 - \sum h_{ij}^\alpha h_{ij}^\alpha \geq 0$ for each j,

2. $n \geq \|\sigma\|^2,$

where $\|\sigma\|^2 = \sum h_{ij}^\alpha h_{ij}^\alpha.$

Proof. From Gauss equation (2.7) and the fact the immersion is minimal, we obtain

$$S(e_j, e_l) = (n-1)\delta_{jl} - \sum h_{ij}^\alpha h_{ij}^\alpha,$$

where S denotes the Ricci tensor of M. From the assumption of the theorem, $S(e_j, e_l) = (n-2)\delta_{jl} - \sum h_{ij}^\alpha h_{ij}^\alpha$ is the (j, l) entry of a positive semi definite symmetric matrix. Q. E. D.

Lemma 3.2. For each α
In particular, we have
\[\sum_{\beta} N(A_{\gamma} A_{\beta} - A_{\beta} A_{\gamma}) \leq 4N(A_{\alpha}) - 4N(A_{\alpha}^2). \]

Proof. Let \(\lambda_1^a, \ldots, \lambda_n^a \) be the eigenvalues of \(A_a \). By a simple calculation, we obtain
\[\sum_{\beta} N(A_{\gamma} A_{\beta} - A_{\beta} A_{\gamma}) = \sum_{\beta \neq \alpha, i, j} (h^i_{\alpha \beta})^2 (\lambda_i^a - \lambda_j^a)^2 = \sum_{\beta \neq \alpha, i, j} (h^i_{\alpha \beta})(\lambda_i^a - \lambda_j^a)^2. \]

Since \((\lambda_i^a - \lambda_j^a)^2 \leq 2((\lambda_i^a)^2 + (\lambda_j^a)^2)\), we obtain
\[\sum_{\beta} N(A_{\gamma} A_{\beta} - A_{\beta} A_{\gamma}) \leq \sum_{\beta \neq \alpha, i, j} 2(h^i_{\alpha \beta})(\lambda_i^a)^2 + (\lambda_j^a)^2) = 4 \sum_{\beta \neq \alpha, i, j} (h^i_{\alpha \beta})(\lambda_i^a)^2. \]

From Lemma 3.1 (1)
\[1 - (\lambda_i^a)^2 \geq \sum_{\beta \neq i, j} (h^i_{\alpha \beta})^2 \text{ for each } i. \]

Hence we obtain
\[\sum_{\beta} N(A_{\gamma} A_{\beta} - A_{\beta} A_{\gamma}) \leq 4 \sum_{i} (1 - (\lambda_i^a)^2)(\lambda_i^a)^2 = 4N(A_{\alpha}) - 4N(A_{\alpha}^2). \]

Lemma 3.3.
\[N(A_{\alpha}^2) \geq \frac{N(A_{\alpha})}{n} \text{ for each } \alpha. \]

The equality holds if and only if \(A_{\alpha}^2 \) is proportional to the identity.

Proof. Let \(\lambda_1^a, \ldots, \lambda_n^a \) be the eigenvalues of \(A_a \). Then
\[nN(A_{\alpha}^2) - (N(A_{\alpha}))^2 = n \sum_{i} (\lambda_i^a)^4 - (\sum_{i} (\lambda_i^a)^2)^2 = \sum_{i,j} ((\lambda_i^a)^2 - (\lambda_j^a)^2)^2. \]

The equality holds if and only if \((\lambda_i^a)^2 = \ldots = (\lambda_n^a)^2 \).

4. Proof of theorem.

We set \(S_{\alpha\beta} = \sum_{i,j} h^i_{\alpha \beta} h^j_{\alpha \beta} \). Then \((p \times p)\)-matrix \((S_{\alpha\beta})\) is symmetric and can be diagonalized for a suitable choice of a basis \(e_{\gamma}, \ldots, e_{\beta} \) at each point so that
\[\sum_{i,j} h^i_{\alpha \beta} h^j_{\alpha \beta} h^k_{\alpha \beta} = \sum_{\alpha} N(A_{\alpha})^p. \]

From Lemma 2.1, 3.1 (2) and 3.3, we obtain
\[\frac{1}{2} (\Delta \| \sigma \|^2) \geq \sum_{i,j} h^i_{\alpha \beta} h^j_{\alpha \beta} + n \| \sigma \|^2 - 4\| \sigma \|^2 + 4 \sum_{\alpha} N(A_{\alpha})^2 - \sum_{\alpha} N(A_{\alpha})^2 \]
\[\geq \sum_{i,j} h^i_{\alpha \beta} h^j_{\alpha \beta} + (n - 4) \| \sigma \|^2 + \frac{4}{n} \sum_{\alpha} N(A_{\alpha})^2 - \sum_{\alpha} N(A_{\alpha})^2. \]
Compact minimal submanifolds of a sphere

\[\begin{align*}
&= \sum h_{ijk} h_{ijk} + (n-4)\|\sigma\|^2 - \frac{(n-4)}{n} \sum N(A_a)^2 \\
& \geq \sum h_{ijk} h_{ijk} + \frac{(n-4)}{n} \|\sigma\|^2(n-\|\sigma\|^2) \geq 0, \quad \text{for } n \geq 5
\end{align*} \]

at each point. Since \(M \) compact and orientable, we obtain that \(\sum h_{ijk} h_{ijk} = 0 \). Furthermore if \(n \geq 5 \), we obtain that \(\|\sigma\|^2(n-\|\sigma\|^2) = 0 \). If \(M \) is not totally geodesic, then \(\|\sigma\|^2 = n \). Hereafter we consider the case where \(M \) is not totally geodesic. Since the second fundamental form \(\sigma \) is parallel, \(M \) is locally symmetric. Since the equality of Lemma 3.3 holds, the eigenvalues of each \(A_a \) can be written as \(\lambda^a, \ldots, \lambda^n \). If \(A_a = 0 \) for some \(a \), then from the fact that the second fundamental form \(\sigma \) is parallel and a result of J. Erbacher, the image of \(M \) is contained in some hypersphere of \(S^{n+p} \). This contradicts the assumption that the immersion is full. From the above and the equality of Lemma 3.2 holds, we have the equality of Lemma 3.1 (1). This proves that

\[S = (n-2)g, \]

where \(g \) denotes the metric tensor of \(M \).

CASE \(n \geq 5 \). Since \(\sum N(A_a)^2 = \|\sigma\|^2(\sum N(A_a))^2 \), we obtain that \((p-1) A_a \) must be zero so that \(p = 1 \). Since \(p = 1 \) and \(\|\sigma\|^2 = n \), a result of [1] implies that \(M \) must be \(M_{m,n-m} \). Furthermore \(S = (n-2)g \) shows that \(M = M_{m,m} \).

CASE \(n = 4 \). Since \(M \) is simply connected and locally symmetric with \(S = 2g \), from [5], \(M \) must be \(S^2(\sqrt{\frac{1}{2}}) \times S^2(\sqrt{\frac{1}{2}}), P^4_{1,0} \) or \(S^4(\sqrt{\frac{3}{2}}) \).

From [2], if \(S^s(r) \) is minimally immersed in \(S^{s+p} \), \(r = \sqrt{\frac{s(s+3)}{4}} \) for some positive integer \(s \). \(S^4(\sqrt{\frac{3}{2}}) \) can not be immersed in \(S^{s+p} \). Q. E. D.

REMARK. Although we can prove the theorem without use of the result of [5], it is somewhat more complicated. Furthermore we can prove the following.

Let \(M \) be an \(n \)-dimensional minimal submanifold immersed in \(S^{n+p} \) such that the immersion is full. If \(n \geq 4 \), the Ricci curvature of \(M \geq n-2 \) and the scalar curvature of \(M \) is constant, then \(M \) is locally either \(S^n \) (totally geodesic), \(M_{m,m} \) in \(S^{n+1} (n=2m) \) or \(P^s_{2/s} \) in \(S^s \).

References

Norio Ejiri
Department of Mathematics
Tokyo Metropolitan University
Setagaya, Tokyo
158 Japan