Singularities of the scattering kernel for two balls

By Shin-ichi NAKAMURA and Hideo SOGA

(Received Oct. 6, 1986)

§ 1. Introduction.

Let \mathcal{O} be a compact obstacle in \mathbb{R}^n $(n \geq 2)$ with a C^∞ boundary $\partial \mathcal{O}$, and assume that $\Omega = \mathbb{R}^n - \mathcal{O}$ is connected. Let us consider the scattering by \mathcal{O} expressed by the equation

$$\begin{cases}
\Box u(t, x) = 0 & \text{in } \mathbb{R}^4 \times \Omega \quad (\Box = \partial_t^2 - \Delta_x), \\
u(t, x') = 0 & \text{in } \mathbb{R}^4 \times \partial \Omega, \\
u(0, x) = f_1(x) & \text{on } \partial \mathcal{O}, \\
\partial_t u(0, x) = f_2(x) & \text{on } \partial \mathcal{O}.
\end{cases}$$

(1.1)

We denote by $k_-(s, \omega)$ ($k_+(s, \omega)$) $L^2(\mathbb{R}^4 \times S^{n-1})$ the incoming (outgoing) translation representation of the initial data $f = (f_1, f_2)$. The scattering operator $S: k_+ \rightarrow k_+$ becomes a unitary operator from $L^2(\mathbb{R}^4 \times S^{n-1})$ to $L^2(\mathbb{R}^4 \times S^{n-1})$ (cf. Lax and Phillips [5], [6]), and is represented with a distribution kernel $S(s, \theta, \omega)$:

$$S(s, \theta, \omega) = \int S(s-t, \theta, \omega)k_-(t, \omega)dtd\omega.$$

$S(s, \theta, \omega)$ is called the scattering kernel. Lax and Phillips in [5] showed that the scattering operator S determined the obstacle \mathcal{O} uniquely (cf. Theorem 5.6 of Ch. V in [5]). But, it was not made clear how the analytical properties of S were connected with the geometrical properties of \mathcal{O}.

Recently some authors have examined the relation between \mathcal{O} and $S(s, \theta, \omega)$. Majda in [7] has obtained the following results in the case of $n=3$:

$$(1.2) \quad \text{supp } S(\cdot, -\omega, \omega) \subseteq (-\infty, -2r(\omega)],$$

$$(1.3) \quad -2r(\omega) \subseteq \text{singsupp } S(\cdot, -\omega, \omega),$$

where $r(\omega) = \min_{x \in \mathcal{O}} x \cdot \omega$. The above results are proved also in the case of $n \geq 2$ by Soga [12]. Soga [11] and Yamamoto [14] have characterized the convexity of \mathcal{O} with the singularities of $S(s, -\omega, \omega)$:
(1.4) \(\mathcal{O} \) is convex if and only if \(\text{sing supp} S(\cdot, -\omega, \omega) \) has only one point for any \(\omega \in S^{n-1} \).

In the present paper we shall examine \(\text{sing supp} S(\cdot, -\omega, \omega) \) precisely when \(\mathcal{O} \) consists of two balls \(\mathcal{O}_1 \) and \(\mathcal{O}_2 \subset \mathbb{R}^2 \) or \(\mathbb{R}^3 \). In this case, by the above results (1.2)~(1.4), the right end point of \(\text{sing supp} S(\cdot, -\omega, \omega) \) is \(-2r(\omega) \), and furthermore there exist other points of \(\text{sing supp} S(\cdot, -\omega, \omega) \) in \((-\infty, -2r(\omega)) \) for some \(\omega \in S^{n-1} \).

Let \(d_i \) be the radius of \(\mathcal{O}_i \) and \(r_i(\omega) = \min_{x \in \mathcal{O}_i} x \cdot \omega \) \((i = 1, 2)\). Suppose that \(\mathcal{O}_1 \cap \mathcal{O}_2 = \emptyset \). The first main result is the following theorem:

Theorem 1. Let \(\omega \) be any vector in \(S^{n-1} \) \((n = 2, 3)\) such that every line parallel to \(\omega \) does not intersect both \(\mathcal{O}_1 \) and \(\mathcal{O}_2 \). Then we have

\[
\text{sing supp} S(\cdot, -\omega, \omega) \cap \left[\min_{i=1,2} (-2r_i(\omega)), +\infty \right) = \{-2r_i(\omega)\}_{i=1,2}.
\]

For more restricted \(\omega \), we can know whole distribution of \(\text{sing supp} S(\cdot, -\omega, \omega) \) completely. Let \(x_0 \in \mathcal{P} = \{ x : x \cdot \omega = \min_{i=1,2} r_i(\omega) - 1 \} \), and consider the broken ray starting at \(x_0 \) in the direction \(\omega \) according to the law of geometrical optics. Then we suppose that this ray is reflected \(m \) times at the points \(x_1, \ldots, x_m \) of the boundary and returns to the point \(x_{m+1} \) of \(\mathcal{P} \) in the direction \(-\omega \). Set

\[
(1.5) \quad s_{m+1}^i = \sum_{j=1}^{m+1} |x_{j-1} - x_j| - 2 \quad \text{when} \ x_i \in \partial \mathcal{O}_i \quad (i = 1, 2).
\]

Theorem 2. Assume that

\[
\text{dist}(\mathcal{O}_1, \mathcal{O}_2) > 13 \max_{i=1,2} d_i,
\]

and let \(\omega \) satisfy

\[
|r_i(\omega) - r_j(\omega)| < \max_{i=1,2} d_i.
\]

Then there exist the broken rays associated with (1.5) for any positive integer \(m \), and we have

(i) \(\text{sing supp} S(\cdot, -\omega, \omega) = \{-2 \min_{j=1,2} r_j(\omega) - s_m^i\} \quad (i = 1, 2) \),

(ii) \(\lim_{m \to +\infty} (s_{m+1}^i - s_m^i) = 2 \text{dist}(\mathcal{O}_i, \mathcal{O}_2) \quad (i = 1, 2) \),

(iii) \(\lim_{m \to +\infty} \left\{ s_m^i - \frac{(s_{m-1}^i + s_{m-1}^j)}{2} \right\} = \text{dist}(\mathcal{O}_i, \mathcal{O}_2) \quad (i = 1, 2) \).

By Theorem 1, shifting the direction \(\omega \), we can know the radius of \(\mathcal{O}_1 \) and \(\mathcal{O}_2 \) from the right end point and the next point of \(\text{sing supp} S(\cdot, -\omega, \omega) \). Furthermore in the same way, we can look for the direction \(\omega \) satisfying the condition in Theorem 2.

To analyze the singularities of \(S(\cdot, -\omega, \omega) \), we use the following representation:
Scattering kernel for two balls

1. \[S(s, \theta, \omega) = \int_{\partial \Omega} \{ \nu \cdot \partial_i^2 \nu(x \cdot \theta - s, x ; \omega) - \partial_i^2 \nu(x \cdot \theta - s, x ; \omega) \} \nu \cdot \nu(x \cdot \theta - s, x ; \omega) \} dS_x \quad (\theta \neq \omega). \]

Here, \(\nu \) denotes the unit inner vector normal to the boundary \(\partial \Omega \), and \(\nu(t, x ; \omega) \) is the solution of the equation

\begin{align*}
\Box \nu(t, x ; \omega) &= 0 \quad \text{in } \mathbb{R}^1 \times \Omega, \\
\nu &= -2^{-1}(-2\pi i)^{-n} \delta(t - x \cdot \omega) \quad \text{on } \mathbb{R}^1 \times \partial \Omega, \\
\nu &= 0 \quad \text{for } t < r(\omega).
\end{align*}

The representation (1.6) was proved by Majda [7] in the case of \(n=3 \), and by Soga [11] in the case of \(n \geq 2 \). In § 3 we prove Theorem 1 and Theorem 2 by examining how the singularities of \(\nu \) influence \(\text{singsupp} S(\cdot, -\omega, \omega) \) through (1.6) by the same procedures as in [7, 11], etc. In view of Guillemin [1], Petkov [9], etc., we expect that \(\text{singsupp} S(\cdot, -\omega, \omega) \) is contributed by only the broken rays associated with (1.5). The main tasks in the proof of Theorem 2 are to show that there exist actually such rays for any \(m \) (cf. Theorem 2.1) and to investigate those properties precisely (cf. Theorems 2.2 and 2.3).

§ 2. Properties of the broken rays.

At first, we define precisely the broken rays stated in Introduction. Denote by \(\nu(x) \) the unit inner vector normal to the boundary \(\partial \Omega \) at \(x \in \partial \Omega \). We suppose that \(\{ x = x_o + l \xi_o; l > 0 \} \cap \partial \Omega \neq \emptyset \) for \(x_o \in \Omega \) and \(\xi_o \in S^{n-1} \), and define \(l_{j-1}, x_j \), and \(\xi_j \) successively for \(j = 1, 2, \ldots \) by

\[l_{j-1} = \inf \{ l > 0; \{ x_{j-1} + l \xi_{j-1} \} \cap \partial \Omega \neq \emptyset \}, \]

\[x_j = x_{j-1} + l_{j-1} \xi_{j-1}, \]

\[\xi_j = \xi_{j-1} - 2(\xi_{j-1} \cdot \nu(x_j))\nu(x_j), \]

where \(l_{j-1} = \infty \) when \(x_{j-1} + l \xi_{j-1} \not\in \partial \Omega \) for any \(l > 0 \). Assuming that these \(\{ l_j \} \), \(\{ x_j \} \) and \(\{ \xi_j \} \) are well-defined, we call the set

\[L(x_o, \xi_o) = \bigcup \{ x = x_j + l \xi_j; 0 \leq l < l_j \} \]

the broken ray starting at \(x_o \) in the direction \(\xi_o \), and \(\{ x_j \} \) the reflection points. When there exists an integer \(m \geq 1 \) such that \(\{ x = x_m + l \xi_m; l > 0 \} \cap \partial \Omega = \emptyset \), we set

\[\# \text{ref} L(x_o, \xi_o) = m, \quad \text{dir}_L(x_o, \xi_o) = \xi_m. \]

One of the main purposes in this section is to show the following theorem, which plays a fundamental role on the proof of Theorem 2 in Introduction.
THEOREM 2.1. Let \(\omega \) be any vector in \(S^{n-1} \) \((n=2, 3)\) such that every line parallel to \(\omega \) does not intersect both \(\mathcal{O}_1 \) and \(\mathcal{O}_2 \). Then, for any positive integer \(m \) there exists a broken ray \(L^i(x_0, \omega) \) uniquely such that

(i) \(x_0 \) is on the plane \(P=\{x : x \cdot \omega = \min_{i=1,2} r_i(\omega)-1\} \),
(ii) the first reflection point \(x_1 \) belongs to \(\mathcal{O}_i \),
(iii) \(\#\text{ref } L^i(x_0, \omega) = m \),
(iv) \(\text{dir} L^i(x_0, \omega) = -\omega \).

Before proving this theorem, we explain a key lemma for the proof. The proof in the case of \(n=3 \) will be reduced to that in the case of \(n=2 \), and so we consider only the case of \(n=2 \) for a while.

Let the assumption in Theorem 2.1 be satisfied. Then we can assume without loss of generality that \(\mathcal{O}_1 \subset \{x= (x_1, x^2) ; x_1 < 0\} \), \(\mathcal{O}_2 \subset \{x ; x_1 > 0\} \) and \(\omega = (0,1) \). We employ the following mappings \(\phi, \tilde{\phi}, \phi_1 \) and \(\phi_2 \) from \((-\pi, \pi)\) to the circles \(S_1, S_1, \partial \mathcal{O}_1 \) and \(\partial \mathcal{O}_2 \subset \mathbb{R}^2 \) respectively:

\[
\phi(\theta) = (\cos \theta, \sin \theta),
\tilde{\phi}(\theta) = (\cos(\theta+\pi), \sin(\theta+\pi)),
\phi_1(\theta) = c_1 + d_1(\cos \theta, \sin \theta),
\phi_2(\theta) = c_2 + d_2(\cos(\theta+\pi), \sin(\theta+\pi)).
\]

Note that \(\phi, \tilde{\phi} \) and \(\phi_1 (i=1, 2) \) are diffeomorphic on \((-\pi, \pi)\) and have the inverse mappings \(\phi_1^{-1}, \tilde{\phi}^{-1} \) and \(\phi_2^{-1} \) respectively. For a \(S^1 \)-valued smooth function \(\xi(y) \) on \(\partial \mathcal{O}_1 \) (or an arc in \(\partial \mathcal{O}_1 \)) consider the line \(\{x = y + l \xi(y) ; l > 0\} \). We suppose that this line intersects \(\partial \mathcal{O}_2 \), and set

\[
l(y) = \inf \{l > 0 ; y + l \xi(y) \in \partial \mathcal{O}_2\}, \quad \bar{y}(y) = y + l(y) \xi(y) \quad (\in \partial \mathcal{O}_2),
\]

\[
(2.1) \quad \bar{\xi}(y) = \xi(y) - 2 \{\xi(y) \cdot \nu(\bar{y}(y))\} \nu(\bar{y}(y)) \quad (\in S^1).
\]

On these notations, we have

LEMMA 2.1. Let \(\xi(y) \) be a \(S^1 \)-valued \(C^1 \) function on an arc \(\{y = \phi_1(\theta)\}_{\theta_1 < \theta < \theta_2} \subset \partial \mathcal{O}_1 \) satisfying \(\xi(y) \cdot \nu(y) > 0 \). Assume that the function \(\phi(\theta) = \phi^{-1}_1(\xi(\phi_1(\theta))) \) satisfies

\[
\frac{d\phi}{d\theta}(\theta) > 0 \quad \text{on } (\theta_1, \theta_2), \quad (-\pi/2, \pi/2) \subset (\theta_1, \theta_2).
\]

Then the line \(\{\phi_1(\theta) + l \xi(\phi_1(\theta))\}_{\theta_1 < \theta < \theta_2} \) intersects \(\partial \mathcal{O}_2 \) for any \(\theta \) in some interval \((\theta_3, \theta_4) \subset (\theta_1, \theta_2) \), and the mapping \(y \to \bar{y}(y) \) is a diffeomorphism from \(\{\phi_1(\theta)\}_{\theta_1 < \theta < \theta_2} \) to \(\{\bar{y} = \phi_2(\mu)\}_{\mu_1 < \mu < \mu_2} \). Furthermore \(\eta(y) = \bar{\xi}(y(\bar{y})) \) has the same properties as \(\xi(y) \) (where \(y(\bar{y}) \) is the inverse mapping of \(\bar{y}(y) \)); that is, \(\eta(y) \cdot \nu(\bar{y}) > 0 \) holds, and the function \(\phi_2(\mu) = \phi^{-1}_2(\eta(y(\bar{y}))) \) satisfies
Scattering kernel for two balls

2.2 $d > 0$ on $[-2r/2, 2r/2] \subset \widetilde{\phi}(\mu_1, \mu_2)$.

Ikawa [3] shows the diffeomorphicity of the mapping $\widetilde{y} : y \mapsto \widetilde{y}(y)$ locally (see Lemma 3.2 of [3]). But we need the further properties of this mapping.

Remark 2.1. Lemma 2.1 is valid also when \mathcal{O}_1 and \mathcal{O}_2 are exchanged each other.

Proof of Lemma 2.1. From the assumptions, it follows that the mapping $T : (\theta, l) \mapsto \Phi_1(\theta) + l \xi(\Phi_1(\theta))$ is diffeomorphic on $M = (0, l_1) \times (0, \infty)$ and that TM contains $\{x : x^1 > 0\}$. Set

$$
\theta_s = \inf\{\theta \in (\theta_1, \theta_2) ; T(\theta, l) \in \partial \mathcal{O}_2 \text{ for some } l > 0\},
$$

$$
\theta_* = \sup\{\theta \in (\theta_1, \theta_2) ; T(\theta, l) \in \partial \mathcal{O}_2 \text{ for some } l > 0\}.
$$

Then, as is easily seen, for any $\theta \in (\theta_s, \theta_*)$ the line $\{T(\theta, l) \mid l > 0\}$ intersects $\partial \mathcal{O}_2$ transversally at two points. Let $T(\theta, l(\theta))$ be the point closer to $\partial \mathcal{O}_1$, and set $\mu(\theta) = \Phi_2^* T(\theta, l(\theta))$. Note that these $l(\theta)$ and $\mu(\theta)$ are also the implicit functions defined by the equation

$$
F(\theta, l, \mu) = \Phi_1(\theta) + l \xi(\Phi_1(\theta)) - \Phi_2(\mu) = 0.
$$

These implicit functions are well-defined since $\partial F/\partial l(\mu, \mu) = \det(\xi(\Phi_1(\theta)), -\partial_\mu \Phi_2(\mu)) \neq 0$ (i.e., $\{T(\theta, l) \mid l > 0\}$ is transversal to $\partial \mathcal{O}_1$ when $\theta_s < \theta < \theta_*$). Denote by $\xi^1(\theta)$ the unit vector normal to $\xi(\Phi_1(\theta))$ with $\det(\xi, \xi^1) > 0$. Then, from the equality $\partial \varepsilon[F(\theta, l(\theta), \mu(\theta))] : \xi^1(\theta) = 0$, we have

$$
\frac{d\mu}{d\theta}(\theta) (\partial_\mu \Phi_1(\mu(\theta)) : \xi^1(\theta)) = -(\partial_\theta \Phi_1(\theta) + l(\theta) \partial_\theta [\xi(\Phi_1(\theta))] : \xi^1(\theta)).
$$

It is seen from the assumptions that $\partial_\theta \Phi_1 \cdot \xi^1 < 0$ and $(\partial_\theta \Phi_1 + l(\theta) \xi) \cdot \xi^1 < 0$ when $\theta_s < \theta < \theta_*$. Hence we obtain

$$
(2.3) \quad \frac{d\mu}{d\theta}(\theta) < 0 \quad \text{on } (\theta_s, \theta_*).
$$

This implies that $\widetilde{y}(y) = \Phi_2(\mu(\Phi^{-1}_1(y)))$ is diffeomorphic on $\{\Phi_1(\theta) \mid \theta_s < \theta < \theta_*\}$. From the definition (2.1), the inequality $\gamma(\xi) : \nu(\xi) > 0$ is obvious. Set

$$
\phi(\mu, \sigma) = \Phi^{-1}_1[\Phi(\sigma) - 2\Phi(\sigma) \nu(\Phi_2(\mu)) \nu(\Phi_2(\mu))].
$$

Then we have

$$
\Phi(\mu(\theta)) = \phi(\mu(\theta), \phi(\theta)), \quad \theta_s < \theta < \theta_*.
$$

It is easily see that $\phi(\mu(\theta))$ is smooth on (θ_s, θ_*) and satisfies $\phi(\mu(\theta)) > \pi/2$ as
θ→θ_0 and <−π/2 as θ→θ_1. This yields that

\[-\pi/2, \pi/2] \subset \bar{\Phi}((\mu_i, \mu_0)) \quad (\mu_i=\mu(\theta_{i-1})).

When \(\Phi(\sigma)\cdot v(\Phi(\mu))<0\), we have

\[\partial_\rho \phi(\mu, \sigma) > 0, \quad \partial_\sigma \phi(\mu, \sigma) < 0.\]

Therefore it follows that

\[\frac{d\bar{\Phi}}{d\mu} \frac{d\mu}{d\theta} = \partial_\rho \phi \frac{d\mu}{d\theta} + \partial_\sigma \phi \frac{d\phi}{d\theta} < 0,\]

which implies that \(d\bar{\Phi}/d\mu > 0\) (see (2.3)). The proof is complete.

Proof of Theorem 2.1. We take the coordinates \(x=(x^1, x^2)\) stated below Theorem 2.1, and consider any broken ray \(L(x_o, \omega)\) with \(x_o \in P\). Assume that the first reflection point \(x_1\) of \(L(x_o, \omega)\) belongs to \(\partial \mathcal{O}_2\). The case of \(x_1 \not\in \partial \mathcal{O}_2\) can be treated in the same way. Setting \(\theta = \Phi^{-1}(x_1)\), from the equality \(\xi(x_1) = \omega - 2(\omega \cdot v(x_1))v(x_1)\) we have \(\Phi^{-1}\xi(\Phi(\theta)) = 2\theta + \pi/2\) and \(\xi(\Phi(\theta)) \cdot v(\Phi(\theta)) > 0\) on \([-\pi/2, 0)\). This yields that \((d/d\theta)[\Phi^{-1}\xi(\Phi(\theta))]>0\) on \((-\pi/2, 0)\) and \(\Phi^{-1}\xi(\Phi((-\pi/2, 0))) = (-\pi/2, \pi/2)\). Therefore \(\xi(x_1)\) satisfies the assumptions in Lemma 2.1. Using Lemma 2.1 inductively (cf. Remark 2.1), for any positive integer \(m\) we have broken rays \(L(x_o, \omega)\) with \(\# \text{ref} L(x_o, \omega) = m\) such that \(\xi(x_0)\) (or \(\Phi^{-1}\xi(x_0)\)) covers \([-\pi/2, \pi/2]\) when \(x_o\) moves on some open set in \(P\). The uniqueness of this broken ray for each \(x_o\) follows from (2.2) in Lemma 2.1. Therefore we obtain the broken ray \(L(x_o, \omega)\) with the all required properties. The proof is complete.

Theorem 2.2. Assume that

\[\text{dist}(\mathcal{O}_1, \mathcal{O}_2) > 13 \max_{i=1, 2} d_i,\]

and let \(\omega \in \mathbb{S}^{n-1}\) satisfy

\[|r_1(\omega) - r_2(\omega)| < \max_{i=1, 2} d_i.\]

Then \(s_m^t\) defined by (1.5) satisfies

\[\min_{t=1, 2} s_{m+1}^t > \max_{t=1, 2} s_m^t \quad \text{for} \quad m \geq 1.\]

For the proof of this theorem, we shall explain some lemmas concerned with the reflection points \(x_1, \ldots, x_m\). Let \(a_j \in \partial \mathcal{O}_j, \ j=1, 2\) be the points with \(|a_1 - a_2| = \text{dist}(\mathcal{O}_1, \mathcal{O}_2)\).

Lemma 2.2. Let \(x_1, \ldots, x_m\) be the reflection points of a broken ray. If \(x_j \in \partial \mathcal{O}_1\) and \(x_{j-1} \in \partial \mathcal{O}_2\) satisfy \(\Phi^{-1}(x_j) \geq \Phi^{-1}(a_1)\) and \(\Phi^{-1}(x_{j-1}) > \Phi^{-1}(a_2)\), then it holds that
Scattering kernel for two balls 211

\[\Phi_1^t(x_j) < \Phi_1^t(x_{j+2}) < \Phi_1^t(x_{j+4}) < \cdots, \]

\[\Phi_2^t(a_2) > \Phi_2^t(x_{j+1}) > \Phi_2^t(x_{j+3}) > \cdots. \]

PROOF. From the assumption and the law of the reflection, it follows that

\[\Phi_1^r \left(\frac{x_{j-1} - x_j}{|x_{j-1} - x_j|} \right) < \Phi_1^r \left(\frac{a_2 - a_1}{|a_2 - a_1|} \right) < \Phi_1^r \left(\frac{x_{j+1} - x_j}{|x_{j+1} - x_j|} \right). \]

This implies that

\[\Phi_2^r(x_{j-1}) > \Phi_2^r(a_2) > \Phi_2^r(x_{j+1}). \]

In the same way we have \(\Phi_1^r(x_j) < \Phi_1^r(x_{j+2}) \). Repeating these methods inductively, we obtain the lemma.

The following lemma is concerned with the reflection points of the broken ray \(L \) when \(*\text{ref} \ L \) is odd.

LEMMA 2.3. Let \(x_1, \ldots, x_{2m-1} (x_1 \in \partial \Omega_1) \) be the reflection points of the broken ray \(L^1(x_0, \omega) (\ast \text{ref} \ L^1 = 2m-1) \) stated in Theorem 2.1. Then the following (i) or (ii) holds:

(i) If \(x_m \in \partial \Omega_1 \), then we have

\[-\pi/2 \leq \Phi_1^r(x_1) < \Phi_1^r(x_3) < \cdots < \Phi_1^r(x_{m}) < \Phi_1^r(a_1), \]

\[\pi/2 \geq \Phi_2^r(x_2) > \Phi_2^r(x_4) > \cdots > \Phi_2^r(x_{m-1}) > \Phi_2^r(a_2), \]

\(x_j = x_{2m-1-(j-1)} \) for \(j = 1, 2, \ldots, m \).

(ii) If \(x_m \in \partial \Omega_2 \), then we have

\[-\pi/2 \leq \Phi_1^r(x_1) < \Phi_1^r(x_3) < \cdots < \Phi_1^r(x_{m-1}) < \Phi_1^r(a_1), \]

\[\pi/2 \geq \Phi_2^r(x_2) > \Phi_2^r(x_4) > \cdots > \Phi_2^r(x_{m}) > \Phi_2^r(a_2), \]

\(x_j = x_{2m-1-(j-1)} \) for \(j = 1, 2, \ldots, m \).

PROOF. Let us show only (i). (ii) can be treated in the same way. If \(x_1 \neq x_{2m-1} \), then \(x_3 \neq x_{2m-3} \) follows from Lemma 2.1 and \(\xi_{2m-1} = -\omega \). Therefore successively we obtain \(x_m \neq x_{2m-m} (= x_m) \). This is a contradiction. Hence we have

\[x_j = x_{2m-1-(j-1)} \] for \(j = 1, 2, \ldots, m \).

(2.4)

It is obvious that \(-\pi/2 \leq \Phi_1^r(x_i) \) and \(\pi/2 \geq \Phi_2^r(x_i) \). We obtain \(\Phi_1^r(x_{2i-1}) < \Phi_1^r(a_1) \) and \(\Phi_2^r(x_{2j}) > \Phi_2^r(a_2) \) for any \(i \) and \(j \) (\(i = 1, 2, \ldots, m \); \(j = 1, 2, \ldots, m-1 \)). If not, for some \(i \) it holds that \(\Phi_1^r(x_{2i+1}) \geq \Phi_1^r(a_1) \) and \(\Phi_2^r(x_{2j}) > \Phi_2^r(a_2) \), which implies from Lemma 2.2 that \(\Phi_1^r(x_{2i}) < \Phi_1^r(x_{2i+2}) < \cdots < \Phi_1^r(x_{2m-1}) \); this does not consist with (2.4). Let \(\Phi_1^r(x_i) \geq \Phi_1^r(x_{i+2}) \) for an \(i \) (\(1 \leq i \leq m-2 \)). Then, by the same procedures as in the proof of Lemma 2.2, we have
However, from (2.4), $\varphi_{1}^{-l}(x_{m-2})$ is equal to $\varphi_{1}^{-l}(x_{m+2})$, which does not consist with (2.5). Hence we have

$$\varphi_{1}^{-l}(x_{1}) < \varphi_{1}^{-l}(x_{3}) < \ldots < \varphi_{1}^{-l}(x_{m}).$$

Similarly, we have

$$\varphi_{2}^{-l}(x_{2}) > \varphi_{2}^{-l}(x_{4}) > \ldots > \varphi_{2}^{-l}(x_{m-1}).$$

The proof is complete.

When $\text{ref } L$ is even, the following lemma is obtained by the same procedures as for Lemma 2.3.

Lemma 2.4. Let $x_{1}, x_{2}, \ldots, x_{2m}$ ($x_{i} \in \partial O$) be the reflection points of the broken ray $L^{i}(x_{0}, \omega)$ ($\text{ref } L^{i}=2m$) stated in Theorem 2.1. Then there exists only one integer l such that

$$\varphi_{1}^{-1}(x_{1}) < \varphi_{1}^{-1}(x_{3}) < \ldots < \varphi_{1}^{-1}(x_{2l+1}),$$

$$\varphi_{1}^{-1}(x_{2l+1}) > \varphi_{1}^{-1}(x_{2l+3}) > \ldots > \varphi_{1}^{-1}(x_{2m-1}),$$

$$\varphi_{2}^{-1}(x_{2}) > \varphi_{2}^{-1}(x_{4}) > \ldots > \varphi_{2}^{-1}(x_{2l}),$$

$$\varphi_{2}^{-1}(x_{2l+2}) < \varphi_{2}^{-1}(x_{2l+4}) < \ldots < \varphi_{2}^{-1}(x_{2m}),$$

$$-\pi/2 \leq \varphi_{1}^{-1}(x_{2j-1}) < \varphi_{1}^{-1}(a_{i}) \quad \text{and} \quad \varphi_{2}^{-1}(a_{j}) < \varphi_{2}^{-1}(x_{j}) \leq \pi/2 \quad \text{for } j=1, 2, \ldots, m.$$
Scattering kernel for two balls 213

$$\sum_{k=1}^{\infty} |x_k-a(x_k)| < 4\max\{d_1, d_2\} \sum_{k=1}^{\infty} (13)^{-k} = \frac{13}{3} \max\{d_1, d_2\},$$

which yields that

$$\max_{i=1,2} s_m \leq |x_0-x_1| + |x_m-x_{m+1}| - 2 + 2\max\{d_1, d_2\} + (m-1)\text{dist}(C_1, C_2).$$

On the other hand, from $|r_1(\omega)-r_2(\omega)| < \max\{d_1, d_2\}$ we have

$$0 \leq |x_0-x_1| + |x_m-x_{m+1}| - 2 \leq 4\max\{d_1, d_2\}.$$

Therefore, noting that $|y_0-y_1| + |y_{m+1}-y_{m+2}| - 2 \geq 0$, we obtain

$$\max_{i=1,2} s_m < \left(4 + \frac{26}{3}\right)\max\{d_1, d_2\} + (m-1)\text{dist}(C_1, C_2) < \min_{i=1,2} s_{m+1}.$$

The proof is complete.

The following theorem is concerned with the distribution of s_m defined by (1.5) as $m \to +\infty$.

Theorem 2.3. Assume that $\text{dist}(C_1, C_2) > 13\max\{d_1, d_2\}$ and let $\omega \in S^{n-1}$ satisfy the assumptions stated in Theorem 1. Then we have

1. $$\lim_{m \to +\infty} (s_{m+1}-s_m) = 2\text{dist}(C_1, C_2) \quad (i=1, 2),$$
2. $$\lim_{m \to +\infty} \left(\frac{s_{2m}+s_{2m-1}}{2}\right) = \text{dist}(C_1, C_2) \quad (i=1, 2).$$

We explain some lemmas for the proof.

Lemma 2.5. Let x_1, \ldots, x_{2m-1} and y_1, \ldots, y_{2m} $(m \geq 1)$ be the reflection points of the broken rays $L^i(x_0, \omega)$ and $L^i(y_0, \omega)$ $(i=1, 2)$ respectively with the properties stated in Theorem 2.1. Then it holds that

1. $\Phi^1(x_i) < \Phi^2(y_i)$ if x_i and $y_i \in \partial C_1$,
2. $\Phi^2(x_i) > \Phi^1(y_i)$ if x_i and $y_i \in \partial C_2$.

Proof. Let us show only (i). (ii) can be treated in the same way. If $\Phi^1(x_i) = \Phi^2(y_i)$, then we obtain $x_j = y_j$ for $j=0, 1, \ldots, 2m-1$. Therefore there cannot exist y_{2m}. This is a contradiction. If $\Phi^1(x_i) > \Phi^2(y_i)$, then using Lemma 2.1 successively we have $\Phi^2(x_2) < \Phi^2(y_2)$, $\Phi^1(x_3) > \Phi^1(y_3)$, $\Phi^2(x_{2m-2}) < \Phi^2(y_{2m-2})$, $\Phi^1(x_{2m-1}) < \Phi^1(y_{2m-1})$. If $\Phi^1(x_{2m-1}) < \Phi^1(y_{2m-1})$, there cannot exist y_{2m} with $\text{dir}_m L^i(x_0, \omega) = -\omega$. Hence we obtain this lemma.

Lemma 2.6 (Lemma 3.3 in Ikawa [3]). Set

$$\mathcal{L} = \{x : x = ta_1+(1-t)a_2, \ t \in \mathbb{R}\}, \quad U(\delta) = \{x \in \partial \Omega; \ \text{dist}(x, \mathcal{L}) \leq \delta\}, \ \delta > 0.$$
Let \(x_1, x_2, \ldots \) be the reflection points of a broken ray \(L(x_0, \xi_0) \), and assume that \(x_i \in \partial \Omega - U(\delta) \) and \(L(x_0, \xi_0) \cap U(\delta) = \emptyset \). Then there exists a positive constant \(C \) independent of \(\delta \) such that

\[
\text{ref } L(x_0, \xi_0) \leq C\delta^{-2}.
\]

Proof of Theorem 2.3. At first, let us show that for any \(\varepsilon > 0 \)

\[
\left| \text{dist}(O_0, O_1) + \frac{s_{1m-1}}{2} - \frac{s_{2m+1}}{2} \right| < \varepsilon
\]

if \(m \) is large enough. Combining this with (ii) in the theorem, we get (i) in the theorem. We take the \(\delta \) in Lemma 2.6 so that \(\delta = \varepsilon \). Let \(\{x_j\}_{j=0, \ldots, 2m} \) and \(\{y_j\}_{j=0, \ldots, 2m+2} \) be the points defining \(s_{1m-1} \) and \(s_{2m+1} \) respectively (cf. (1.5)). Since the equalities \(x_j = x_{2m-1-j} \) (\(j = 1, \ldots, m \)) follow from Lemma 2.3, we have

\[
\sum_{j=1}^{m-1} |x_j - x_{j+1}| - 1.
\]

From Lemma 2.6, there exists a positive integer \(l = l(\varepsilon) \) independent of \(m \) such that \(j < l \) if \(1 \leq j \leq m-1 \) and \(x_j \notin U(\varepsilon) \). We have the same properties for \(\{y_j\}_{j=1, \ldots, m+1} \). Hence we obtain

\[
\left| \text{dist}(O_0, O_1) + \frac{s_{1m-1}}{2} - \frac{s_{2m+1}}{2} \right| \\
\leq \sum_{j=0}^{m-1} \left(|x_j - x_{j+1}| - |y_j - y_{j+1}| \right) \\
+ \sum_{j=1}^{m-1} \left(|x_j - x_{j+1}| - |y_j - y_{j+1}| \right) + |\text{dist}(O_0, O_1) - |y_m - y_{m+1}| |
\]

\[
= I_1 + I_2 + I_3.
\]

Taking account of (2.6) and Lemma 2.3, we get

\[
\{m-1-(l-1)} \text{dist}(O_0, O_1) \leq \sum_{j=0}^{m-1} |x_j - x_{j+1}|
\]

\[
\leq \{m-1-(l-1)} \text{dist}(O_0, O_1) + 2|x_l - a(x_l)| \cdot \sum_{j=0}^{m-1} (13)^{-j}
\]

\[
\leq \{m-1-(l-1)} \text{dist}(O_0, O_1) + C(\varepsilon) \cdot \sum_{j=0}^{m-1} (13)^{-j},
\]

where the constant \(C(\varepsilon) (>0) \) does not depend on \(m \) and tends to 0 as \(\varepsilon \to 0 \). The same inequality holds for \(\sum_{j=0}^{m-1} |y_j - y_{j+1}| \). Therefore we have

\[
I_3 \leq C(\varepsilon) \cdot \sum_{j=0}^{m-1} (13)^{-j} < 2C(\varepsilon)
\]
From Lemmas 2.1, 2.3 and 2.5 we see that each j-th reflection points x_j and y_j for $j \leq l$ tend to the same point as $m \to +\infty$. Hence we get $I_1 < \varepsilon$ for large m. By Lemma 2.6, it holds that $I_3 < \varepsilon$ if m is large enough. Therefore the required inequality is obtained.

Next, let us check (ii). Let $\{x_j\}_{j=1, \ldots, 2m}$ and $\{y_j\}_{j=0, \ldots, 2m+1}$ be the points defining s^m_{2m-1} and s^m_{2m} ($i=1, 2$) respectively. The broken ray for s^m_{2m} coincides with that for s^m_{2m}, and so y_j is equal to $y^m_{2m-(j-1)}$ for $j=1, 2, \ldots, 2m$. Hence we have

$$s^m_{2m} = \sum_{j=1}^{2m+1} |y^m_j - y^m_j| - 2 = \sum_{j=1}^{2m} |y^m_{j-1} - y^m_j| + |y^m_{j+1} - y^m_j| + \sum_{j=1}^{2m} |y^m_{j-1} - y^m_j| - 2.$$

Therefore it follows that

$$s^m_{2m} = \sum_{j=1}^{2m+1} |y^m_j - y^m_j| - 2 = \sum_{j=1}^{2m} |y^m_{j-1} - y^m_j| + |y^m_{j+1} - y^m_j| + \sum_{j=1}^{2m} |y^m_{j-1} - y^m_j| - 2.$$

By the same procedures as above, we see that $I_i \to 0$ ($i=1, 2$) as $m \to +\infty$. Hence (ii) is obtained. The proof is complete.

Lastly let us prove Theorem 2.1 in the case of $n=3$. Noting that \mathcal{O}_1 and \mathcal{O}_2 are balls, we see that on the (2 dimensional) plane

$$Q = \{x = t_1 \omega + t_2 \overrightarrow{a_1} + c_1; t_1, t_2 \in \mathbb{R}\}$$

there exists the broken ray with the properties stated in Theorem 2.1. Therefore it suffices to show that if the first reflection point x_1 is not on Q then $\text{dir}_\omega \mathcal{L}(x_0, \omega)$ is different from $-\omega$ for any m. If $x_1 \notin Q$, then the half line $\{x_1 + \ell \xi; \ell \geq 0\}$ does not intersect Q. Furthermore, by induction, we see that $x_j \notin Q$ and $\{x_j + \ell \xi; \ell \geq 0\} \cap Q = \emptyset$. This implies that ξ_m cannot be equal to $-\omega$.

§ 3. Proof of the main theorems.

Fix $\omega \in S^{n-1}$ satisfying the assumptions in Theorem 1 (or Theorem 2). Let $\alpha(s)$ be a C^∞ function such that $0 \leq \alpha(s) \leq 1$ for $s \in \mathbb{R}^1$, $\alpha(s) = 1$ for $|s| < 1/2$ and $\alpha(s) = 0$ for $|s| > 1$, and set

$$\alpha_i(s) = \alpha\left(\frac{s}{2\varepsilon}\right) \quad (\varepsilon > 0).$$
From (1.6) it follows that

$$F[\alpha(s-s_0)S(s,-\omega,\omega)](\sigma)$$

$$= -\int_{R^1 \times \partial \Omega} \nu \cdot \omega e^{i \sigma (s \cdot x - \omega)} \alpha(s-x \cdot \omega-s-s_0) \partial_s^{n-1} v(s, x; \omega) ds dS_x$$

$$- \int_{R^1 \times \partial \Omega} e^{i \sigma (s \cdot x - \omega)} \alpha(s-x \cdot \omega-s-s_0) \partial_s^{n-2} \partial_x v(s, x; \omega) ds dS_x,$$

where F denotes the Fourier transformation in the variable s and the integral in s is in the sense of the distributions.

We take a partition of unity $\{X_{pq}(t, x)\}_{q=1, 2}^{p=1, \ldots, l_q}$ on $R^1 \times \partial \Omega$ such that $\text{supp}[X_{pq}] \cap (R^1 \times \partial \Omega) = \emptyset$ for any $p=1, \ldots, l_q$ ($q=1, 2$). Let $v_{pq}(t, x; \omega)$ be the solution of the equation

$$v_{pq} \in C^\infty(R^1 \times \Omega),$$

$$(3.2) \quad (v_{pq} + 2^{-1}(-2\pi i)^{1-n} X_{pq} \partial(t-x \cdot \omega))|_{R^1 \times \partial \Omega} \in C^\infty(R^1 \times \partial \Omega),$$

and v_{pq} smooth if $t < r(\omega)$.

Then $v(t, x; \omega)$ is equal to $\sum_{q=1}^{l_q} \sum_{p=1}^{l_q} v_{pq}(t, x; \omega)$ mod C^∞, and so by (3.1) we have

$$F[\alpha(s-s_0)S(s,-\omega,\omega)](\sigma)$$

$$= -\sum_{q=1}^{l_q} \sum_{p=1}^{l_q} \int_{R^1 \times \partial \Omega} \nu \cdot \omega e^{i \sigma (s \cdot x - \omega)} \alpha(s-x \cdot \omega-s-s_0) \partial_s^{n-1} v_{pq}(s, x; \omega) ds dS_x$$

$$+ \int_{R^1 \times \partial \Omega} e^{i \sigma (s \cdot x - \omega)} \alpha(s-x \cdot \omega-s-s_0) \partial_s^{n-2} \partial_x v_{pq}(s, x; \omega) ds dS_x + O(|\sigma|^{-\infty}).$$

In view of the boundary condition, we have

$$\sum_{q=1}^{l_q} \sum_{p=1}^{l_q} I_{pq}(\sigma) = \sum_{q=1}^{l_q} \sum_{p=1}^{l_q} c_p^{\sigma} \sum_{j=0}^{n-1} \int_{\partial \Omega} \nu \cdot \omega e^{i \sigma (s \cdot x - \omega)} \alpha(s-x \cdot \omega-s-s_0) ds dS_x,$$

where $c_p^{\sigma} = 2^{-1}(2\pi i)^{-n}$; furthermore we obtain

$$I_{pq}(\sigma) = \sum_{j=0}^{n-1} c_p^{\sigma} \sum_{j=0}^{n-1} \int_{\partial \Omega} e^{i \sigma (s \cdot x - \omega)} \alpha(s-x \cdot \omega-s-s_0) ds dS_x$$

where $c_p^{\sigma} = (i)^{n-2}$.

The phase function $x \cdot \omega|_{\partial \Omega}$ has two stationary points: The one x^\perp_q is on $\partial \Omega \cap \{x : x \cdot \omega = \inf_{x \in \partial \Omega} x \cdot \omega\}$ and the other x^\perp_q on $\partial \Omega \cap \{x : x \cdot \omega = \sup_{x \in \partial \Omega} x \cdot \omega\}$. Therefore, if $s^\perp \notin \{-2r_q(\omega), -2r_q(\omega)\}$ (where $r_q(\omega) = \sup_{x \in \partial \Omega} x \cdot \omega$), we have...
Scattering kernel for two balls

(3.3) \[\int_{\partial \Omega'} \nu \cdot \omega e^{2\pi i x \cdot \omega} \alpha_i^\ell(-2x \cdot \omega - s_0) dS_x = O(|\sigma|^{-\infty}) \]

for sufficiently small \(\varepsilon \).

Let \(\{x_t\} \) be the reflection points of a broken ray \(L(x_0, \omega) \) where \(x_0 \in \mathbb{R} = \{x : x \cdot \omega = \min_{i=1,2} \varphi_i(\omega) - 1\} \). And we employ the notations stated in § 2 (e.g., \(\xi_i, \nu(x_t) \), etc.). Since \(\mathcal{O}_i \) is strictly convex, by Taylor [13] it is known that

\[\text{WF}[\partial \nu_{pq}(R_u \times \partial \Omega)] \subseteq \text{WF}[\nu_{pq}(R_u \times \partial \Omega)], \]

where WF denotes the wave front set (cf. § 3 of Ch. 10 in [4]). Therefore,

if \((s, x ; \text{grad}(s + x \cdot \omega)|_{R_u \times \partial \Omega}) \) does not belong to \(\text{WF}[\nu_{pq}(R_u \times \partial \Omega)] \), we have

(3.4) \[\int_{R_u \times \partial \Omega'} e^{2\pi i (s + x \cdot \omega)} \alpha_i^\ell(-x \cdot \omega - s - s_0) \partial_s \nu_{pq}(s, x ; \omega) ds dS_x = O(|\sigma|^{-\infty}). \]

On the other hand, it is easily seen that

\[\text{WF}[\nu_{pq}(R_u \times \partial \Omega)] \cap \{(s, x ; \text{grad}(s + x \cdot \omega)|_{R_u \times \partial \Omega}) : (s, x) \in \mathbb{R}^1 \times \partial \Omega \}
\cap \text{supp} \alpha_i(-x \cdot \omega - s - s_0) \]

\[\subseteq \bigcup_{i=1}^{\infty} \bigcup_{m=1}^{\infty} \{(s_m + 2\min r_i(\omega) - x^l, x^l ; 1, \eta) : x^l_m \text{ is the last reflection}
\]

point associated with \(s_m, \eta = -(-\omega - (-\omega \cdot \nu(x^l_m)) \nu(x^l_m)) \}

\[\bigcup \{(\tilde{r}_i(\omega), x^l_t ; 1, 0) : x^l_t \in \partial \Omega, x^l_t \cdot \omega = \tilde{r}_i(\omega) \} \equiv \bigcup_{i=1}^{\infty} \bigcup_{m=1}^{\infty} A_{im} \cup \tilde{A}_i. \]

Thus we have only to consider the terms of \(I_{pq}^{\beta}(\sigma) \) satisfying \((\bigcup_{i=1}^{\infty} \bigcup_{m=1}^{\infty} A_{im} \cup \tilde{A}_i) \cap \text{WF}[\nu_{pq}(R_u \times \partial \Omega)] \neq \emptyset \).

We fix the \(m \) arbitrarily, and make the \(\{x_{pq}\} \) so fine that for only one \(p = \tilde{p} \text{supp}[x_{pq}] \) contains the first reflection point \(x^l_1 \) associated with \(s_m^l \). Let us consider only the case of \(q=1 \). The case of \(q=2 \) can be treated in the same way. We can construct the asymptotic solution of the equation (3.2) with \((p, q) = (\tilde{p}, 2) \) in the same way as in § 7 of Ikawa [3]. That is of the form

(3.5) \[\sum_{r=1}^{\infty} \frac{1}{2\pi} \int_{\partial \Omega} e^{2\pi i (\phi_r(x) - t)} \sum_{j=0}^{N} w_{r,j}(t, x) k^{-j} dk. \]

Here the integral is in the sense of oscillatory integral (cf. § 6 of Ch. 1 in [4]), and \(\phi_r \) and \(w_{r,j} \) are the solutions of the following equations:

|\nabla \phi_r| = 1 \quad \text{in} \ \Omega, \\
\phi_r|_{\partial \Omega} = \phi_{r-1}|_{\partial \Omega} \quad (\phi_0 = x \cdot \omega), \\
\frac{\partial \phi_r}{\partial \nu}|_{\partial \Omega} = -\frac{\partial \phi_{r-1}}{\partial \nu}|_{\partial \Omega}.

(3.6)
where \(l=1 \) for even \(r \) and \(l=2 \) for odd \(r \);

\[
\begin{align*}
2 \frac{\partial w_{r,j}}{\partial t} + 2 \nabla \phi_r \cdot \nabla w_{r,j} + (\Delta \phi_r) w_{r,j} &= -i \square w_{r,j-1} \quad (w_{r,-1}=0), \\
w_{r,j}|_{R_1 \times \partial \Omega} &= -w_{r-1,j}|_{R_1 \times \partial \Omega},
\end{align*}
\]

(3.7)

where \(w_{1,0}|_{R_1 \times \partial \Omega} = -2(-2\pi i)^{s} \chi_{B_1}(t, x)|_{R_1 \times \partial \Omega} \), \(w_{0,0}|_{R_1 \times \partial \Omega} = 0 \) and \(w_{1,j}|_{R_1 \times \partial \Omega} = -w_{0,j}|_{R_1 \times \partial \Omega} = 0 \) for \(j \geq 1 \). By (3.4), the terms

\[
\sum_{j=0}^{N} \int e^{is(\phi_r - t)} w_{r,j} k^{-j} dk
\]

in (3.5) satisfy

\[
\int_{R_1 \times \partial \Omega} e^{is(x \cdot \omega + \phi_m(x))} \alpha_{t}^{(p)} \partial_{x} v_{p} ds dS_x = O(|\sigma|^{-m}) \quad \text{if } r \leq m - 2.
\]

Therefore we see that

\[
\int_{R_1 \times \partial \Omega} e^{is(x \cdot \omega + \phi_m(x))} \alpha_{t}^{(p)} \partial_{x} v_{p} ds dS_x
\]

(3.8)

\[
= 2i\sigma \int_{\partial \Omega} e^{is(x \cdot \omega + \phi_m(x))} \alpha_{t}^{(p)} (-x \cdot \omega - \phi_m(x) - s_0) \frac{\partial \phi_m}{\partial \nu}(x) w_{m,0}(\phi_m(x), x) dS_x
\]

\[+ O(|\sigma|^{-m}) \quad \text{for even } m \text{ and } q'=1 \text{ or odd } m \text{ and } q'=2,
\]

\[= O(|\sigma|^{-m}) \quad \text{for even } m \text{ and } q'=2 \text{ or odd } m \text{ and } q'=1.
\]

The phase function \((x \cdot \omega + \phi_m(x))|_{\partial \Omega} \) has only one stationary point, which is the last reflection point \(x_m \); moreover, by Lemma 4.1 in Ikawa [3], it is non-degenerate. If \(s_0 \) is not equal to \(-2\min_{i=1,2} \nu_r(\omega) - s_m^* \) and \(\varepsilon > 0 \) is small enough, \(\alpha_{t}^{(p)} (-x \cdot \omega - \phi_m(x) - s_0) \) vanishes in a neighborhood of the stationary point \(x_m^* \), and then we have

\[
\int_{R_1 \times \partial \Omega} e^{is(x \cdot \omega + \phi_m(x))} \alpha_{t}^{(p)} \partial_{x} v_{p} ds dS_x = O(|\sigma|^{-m}).
\]

From now on, let us prove Theorem 1 and Theorem 2.

PROOF OF THEOREM 1. Without loss of generality, we may assume that \(r_1(\omega) \leq r_2(\omega) \). Let us consider only the case of \(r_1(\omega) < r_2(\omega) \) since the case \(r_1(\omega) = r_2(\omega) \) can be treated more easily. By Majda [7] and Soga [12], it is known that \(-2r_1(\omega) \) belongs to \(\text{singsupp}S(\cdot, -\omega, \omega) \). In the same way as in the proof of Lemma 4.1 in Soga [11], we see that \(v_{pq} \) with \(\text{supp}[\chi_{pq}] \ni (\phi_1, x_1) \) does not contribute to \(\text{singsupp}S(\cdot, -\omega, \omega) \). Let \(s_0 = -2r_2(\omega) \). Then, by the earlier argument, we have seen that only the \(v_{pq} \) in (3.2) satisfying \(W[\chi_{pq}] \cap A_{21} \)
≠ ∅ may influence the singularity of $S(s, -\omega, \omega)$. Therefore, by (3.8) (with $m=1$) we can write for any integer $N>0$

$$F[\alpha_{i}(s+2r_{i}(\omega))S(s, -\omega, \omega)](\sigma)$$

$$= \sigma^{n-1} \int_{\partial_{2}} e^{i\sigma x \cdot \omega - \phi_{m}(x)} \sum_{j=0}^{N} \beta_{j}(x) \sigma^{-j} dS_{x} + O(|\sigma|^{n-(N+1)^2}),$$

where $\beta_{j}(x) \in C^\infty(\partial_{2})$ and $\beta_{1}(x) = (2\pi)^{1-n}$. By means of the stationary phase methods (cf. §4 in [8]), we obtain

$$|F[\alpha_{i}(s+2r_{i}(\omega))S(s, -\omega, \omega)](\sigma)| \geq C |\sigma|^{(n-1)/2} \text{ as } |\sigma| \to \infty$$

for a constant $C>0$. This shows that

$$\alpha_{i}(s+2r_{i}(\omega))S(s, -\omega, \omega) \in C^\infty(\mathbb{R}^{3}).$$

The proof is complete.

Proof of Theorem 2. (ii) and (iii) in Theorem 2 have been proved in Theorem 2.3. From Theorem 1, it suffices to prove (i) in Theorem 2 when $m>1$. At first, we consider the case of $s_{m}^{i} \neq s_{m}^{j}$. By Theorem 2.2, we see that

$$F[\alpha_{i}(s+s_{m}^{i}+2 \min_{t=1,2} r_{i}(\omega))S(s, -\omega, \omega)](\sigma)$$

$$= 2ic_{2} \sigma^{n-1} \int_{\partial_{2}} e^{i\sigma x \cdot \omega + \phi_{m}(x)} \alpha_{i}(-x \cdot \omega - \phi_{m}(x) + 2 \min_{t=1,2} r_{i}(\omega) + s_{m}^{i})$$

$$\times \frac{\partial \phi_{m}}{\partial \nu}(x) w_{m}(\phi_{m}(x), x) dS_{x}$$

+(Similar integrals multiplying smaller power of σ)$+O(|\sigma|^{-1})$.

Therefore, by the same argument as in the proof of Theorem 1, we have

$$|F[\alpha_{i}(s+s_{m}^{i}+2 \min_{t=1,2} r_{i}(\omega))S(s, -\omega, \omega)](\sigma)| \geq C |\sigma|^{(n-1)/2} \text{ as } |\sigma| \to \infty$$

for a constant $C'>0$. This implies that

$$\alpha_{i}(s+s_{m}^{i}+2 \min_{t=1,2} r_{i}(\omega))S(s, -\omega, \omega) \not\in C^\infty.$$

(3.9)

In the same way, it is seen that $\alpha_{i}(s+s_{m}^{i}+2 \min_{t=1,2} r_{i}(\omega))S(s, -\omega, \omega) \not\in C^\infty$.

Let $s_{m}^i = s_{m}^j$. We obtain

$$F[\alpha_{i}(s+s_{m}^{i}+2 \min_{t=1,2} r_{i}(\omega))S(s, -\omega, \omega)](\sigma)$$

$$= 2ic_{2} \sigma^{n-1} \int_{\partial_{2}} e^{i\sigma x \cdot \omega + \phi_{m}} \alpha_{i}(-x \cdot \omega - \phi_{m} + 2 \min_{t=1,2} r_{i}(\omega) + s_{m}^{i}) \frac{\partial \phi_{m}}{\partial \nu} w_{m}(\phi_{m}(x), x) dS_{x}$$
\[2ic^{\frac{\alpha}{2}}(\sigma-1) \int_{\mathbb{R}^2} e^{i\sigma(x\cdot\omega+\hat{x}_m)} \alpha_i(-x\cdot\omega-\hat{\omega}_m + 2 \min_{i=1,2} r_i(\omega) + s_m^2 \sigma) \frac{\partial^2 \sigma_m}{\partial \omega^2} \tilde{w}_m x \, dS_x \]

+(Similar integrals multiplying smaller power of \(\sigma \)) + \mathcal{O}(|\sigma|^{-m}),

where \(\tilde{\omega}_m \) and \(\tilde{w}_m, \tilde{o} \) are the solutions of (3.6) and (3.7) when \(q=1 \). Noting that \(\omega_m, o \) and \(\omega_m, o \) have the same sign, also when \(s_m^1 = s_m^2 \) we get (3.9) in the same way.

References

