On the regularity of homeomorphisms of E^n.

By Tatsuo Homma and Shin'ichi Kinoshita

(Received Feb. 16, 1953)

Introduction. Let X be a compact metric space and h a homeomorphism of X onto itself. The homeomorphism h has been called by B. v. Kerekjarto [3] regular at $p \in X$, if h satisfies the following condition: for each $\epsilon > 0$ there exists $\delta > 0$ such that for each x with $d(p, x) < \delta$ and for each integer m

$$d(h^m(p), h^m(x)) < \epsilon.$$

One of the purpose of this paper is to prove the following

Theorem 1. Let X be a compact metric space and h a homeomorphism of X onto itself. Assume that X and h have the following property: there exist two distinct points a and b such that

(i) for each point $x \in X - b$ the sequence $\{h^m(x)\}$ converges to a and

(ii) for each point $x \in X - a$ the sequence $\{h^{-m}(x)\}$ converges to b, where $m = 1, 2, 3, \ldots$.

Then h is regular at every point of X except for a and b.

As a corollary of Theorem 1 we have the following

Theorem 2. Let h be a homeomorphism of the n-dimensional sphere S^n onto itself satisfying the same condition as that of Theorem 1. Then h is regular at every point of S^n except for a and b.

Now let S^n be the n-dimensional sphere in the $(n+1)$-dimensional Euclidean space E^{n+1} and let P be a point of S^n. Let $p(x)$ be the stereographic projection of $S^n - P$ from P onto the n-dimensional Euclidean space E^n tangent at the antipode O of P, where we assume that O is the origin of E^n. Let h be a homeomorphism of E^n onto itself. Put $\bar{h}(x) = p^{-1}hp(x)$ where $x \in S^n - P$ and put $\bar{h}(P) = P$. Then we have a homeomorphism \bar{h} of S^n onto itself. B. v. Kerekjarto [3] called a

1) The numbers in the brackets refer to the references at the end of this paper.
homeomorphism \(h \) of \(E^n \) onto itself regular at \(p \in E^n \), if \(h \) is regular at \(p^{-1}(p) \). By Theorem 2 we have immediately the following

Theorem 3. Let \(h \) be a homeomorphism of \(E^n \) onto itself satisfying the following conditions:

(i) for each \(x \in E^n \) the sequence \(\{h^m(x)\} \) converges to the origin \(O \),

(ii) for each \(x \in E^n \) except for \(O \) the sequence \(\{h^{-m}(x)\} \) converges to the point at infinity \(\infty \), where \(m = 1, 2, 3, \ldots \).

Then \(h \) is regular at every point of \(E^n \) except for \(O \).

If \(n = 2 \), in virtue of a theorem of KerékJártó [3], we have immediately the following

Theorem 4. Let \(h \) be a homeomorphism of the plane onto itself satisfying the same conditions as that of Theorem 3. If \(h \) is sense-preserving, then \(h \) is topologically equivalent to the transformation

\[
\begin{align*}
x' &= \frac{1}{2} x, \\
y' &= \frac{1}{2} y,
\end{align*}
\]

and if \(h \) is sense-reversing, then \(h \) is topologically equivalent to the transformation

\[
\begin{align*}
x' &= \frac{1}{2} x, \\
y' &= -\frac{1}{2} y,
\end{align*}
\]

in Cartesian coordinates.

Since Theorem 2 follows immediately from Theorem 1, Theorem 3 immediately from Theorem 2, and Theorem 4 immediately from Theorem 3, we shall prove in this paper Theorem 1 only. To this purpose a notion of bulging sequences will be introduced in §1. Then in §2 Theorem 1 will be proved. In §3 we shall give another application of bulging sequences in relation to the works of A. S. Besicovitch [1] [2].

§1. Bulging sequences.

Let \(A \) be a subset of a separable metric space \(X \) and let \(f \) be a continuous mapping of \(X \) into itself. A sequence \(\{f^n(A)\} \) will be said to be a bulging sequence, if for each natural number \(n \)

\[
f^n(A) = \bigcup_{i=0}^{\infty} f^i(A) = 0.
\]
LEMMA 1. Let A be compact. If $\bigcup_{n=0}^{\infty} f^n(A)$ is not compact, then \{f^n(A)\} is a bulging sequence.

Proof. Suppose on the contrary that \{f^n(A)\} is not a bulging sequence and that there exists a natural number m such that

$$f^m(A) \subseteq f(A) \cup f^{m+1}(A) \cup \cdots \cup f^{m-n}(A).$$

Then it is easy to see that for each natural number i

$$f^{m+i}(A) \subseteq f(A) \cup f^{m+1}(A) \cup \cdots \cup f^{m-i}(A).$$

Therefore we have

\[
(*) \quad \bigcup_{n=0}^{\infty} f^n(A) = f(A) \cup f^{m+1}(A) \cup \cdots \cup f^{m+n}(A).
\]

Since a continuous image of a compactum is compact and since a finite sum of compacta is also compact, the right hand side of (*) is compact, which is a contradiction.

LEMMA 2. Let \{f^n(A)\} be a bulging sequence and let

$$C_n = A \setminus f^{-n}(f^n(A) \cup \bigcup_{j=0}^{m-1} f^j(A)).$$

for every natural number n. Then $C_n \neq 0$ and $C_n \supseteq C_{n+1}$.

Proof. First we prove that $C_n \neq 0$. Since \{f^n(A)\} is a bulging sequence, there exists a point $p \in f^n(A) - \bigcup_{j=0}^{n} f^j(A)$. Then there exists a point $q \in A$ such that $f^n(q) = p$ and then $q \in A \setminus f^{-n}(f^n(A) \cup \bigcup_{j=0}^{m-1} f^j(A)) \neq C_n$. Therefore $C_n \neq 0$.

Now we prove that $C_n \supseteq C_{n+1}$. Let x be a point of C_{n+1} and suppose that $x \in C_n$. Then there exists an $m > n$ such that $f^n(x) \in f^m(A)$. Therefore $f^{m+n}(x) \in f^{m+n+1}(A)$, which contradicts $x \in C_{n+1}$.

LEMMA 3. Let A be compact and let \{f^n(A)\} be a bulging sequence. Then there exists a point $p \in A$ such that for each natural number n

$$f^n(p) \cap \text{Int}(A) = 0.$$

Proof. Let C_m be the same as in Lemma 2. Take $x_m \in C_m$. Since A is compact, there exists a subsequence $\{x_{m_k}\}$ which converges to a point $p \in A$. Then \{f^n(x_{m_k})\} converges to $f^n(p)$ for every n. If $m_k > n$, then $f(x_{m_k}) \cap f^n(C_{m_k}) = f^n(C_{n+1})$ by Lemma 2. Since $f^n(C_m) \cap A = 0$ by the definition of C_m, $f^n(x_{m_k}) \cap A = 0$ for every $m_k > n$. Then we have $f^n(p) \cap \text{Int}(A) = 0$ for every n, and the proof is complete.
§ 2. Proof of Theorem 1.

In § 2 we suppose that X is a non-degenerated compactum. Take two distinct points a and b of X and let φ be a continuous real-valued function on X such that

\[
\begin{align*}
-\frac{1}{2} \pi &\leq \varphi(x) \leq \frac{1}{2} \pi \\
\varphi(x) &= \frac{1}{2} \pi \\
\varphi(x) &= -\frac{1}{2} \pi
\end{align*}
\]

for each $x \in X$, if and only if $x = a$, and if and only if $x = b$.

The existence of such a function is obvious. Put

\[\psi(x) = \tan \varphi(x) .\]

For each real number r put

\[
A(r) = \{x \mid \psi(x) \geq r\} \cup a ,
\]

\[
B(r) = \{x \mid \psi(x) \leq r\} \cup b .
\]

It is easy to see that

(i) $A(r)$ and $B(r)$ are compact,

(ii) if $r > r'$, then $A(r) \subset A(r')$ and $B(r) \supset B(r')$,

(iii) if r tends to $+\infty$, then $A(r)$ converges to a, and

(iv) if r tends to $-\infty$, then $B(r)$ converges to b.

Now we prove the following

Lemma 4. Let f be a continuous mapping of X into itself such that for each $x \in X - b$ the sequence $\{f^n(x)\}$ converges to a. Then $\bigcup_{n=0}^{\infty} f^n(A(r))$ is compact for every r.

Proof. Suppose on the contrary that $\bigcup_{n=0}^{\infty} f^n(A(r))$ is not compact. Then by Lemma 1 $\{f^n(A(r))\}$ is a bulging sequence. Therefore by Lemma 3 there exists a point $p \in A(r)$ such that for each n

\[f^n(p) \cap \text{Int}(A(r)) = 0 .\]

Then $\{f^n(p)\}$ does not converge to a, which is a contradiction.

Hereafter in § 2 we assume that a homeomorphism h of X onto itself satisfies the condition of Theorem 1. Then we have the following
Lemma 5. For each r the sequence $\{h^n(A(r))\}$ converges to a.

Proof. Since $U_\infty \cap A(r)$ is compact by Lemma 4, there exists a real number r_0 such that $U_\infty \cap h^n(A(r)) \subset A(r_0)$. Take $x_n \in h^n(A(r))$. It is easy to see that if we prove that the sequence $\{x_n\}$ converges to a, then the proof of Lemma 5 is complete.

Since $x_n \in A(r_0)$, the set $U_\infty x_n$ has a limit point. Now we suppose that $U_\infty x_n$ has a limit point $p \in A(r_0)$ different from a. Then there exists a subsequence $\{x_{n_k}\}$ which converges to p. Then $\{h^{-m}(x_{n_k})\}$ converges to $h^{-m}(p)$ for every natural number m. Now put $y_{n_k} = h^{-n_k}(x_{n_k})$, then $y_{n_k} \in A(r)$. If $n_k > m$, then

$$h^{-m}(x_{n_k}) = h^{-m}h^n(y_{n_k}) = h^{-m}h^n(y_{n_k}) \in A(r_0).$$

Therefore $h^{-m}(p) \subset A(r_0)$ for every m. Then $\{h^{-m}(p)\}$ does not converge to b, which is a contradiction.

Similarly we have the following

Lemma 6. For each r the sequence $\{h^{-n}(B(r))\}$ converges to b.

Proof of Theorem 1. Let $p \in X^a - b$ and let ε be a given positive real number. Then there exist real numbers r_1 and r_2 such that

$$p \in \text{Int}(A(r_1)) \quad \text{and} \quad p \in \text{Int}(B(r_2)),$$

respectively. Put

$$U_1 = \left\{ x \mid d(a, x) < \frac{1}{2} \varepsilon \right\}$$

and

$$U_2 = \left\{ x \mid d(b, x) < \frac{1}{2} \varepsilon \right\}.$$

By Lemma 5 and Lemma 6, there exist natural numbers n_1 and n_2 such that $h^n(A(r_1)) \subset U_1$ for every $n > n_1$ and that $h^{-n}(B(r_2)) \subset U_2$ for every $n > n_2$, respectively. Now let V_1 and V_2 be neighbourhoods of p such that $\delta(h^n(V_1)) < \varepsilon$ for every $0 \leq n \leq n_1$ and that $\delta(h^{-n}(V_2)) < \varepsilon$ for every $0 \leq n \leq n_2$, respectively. Take $\delta > 0$ such that

$$\{ x \mid d(p, x) < \delta \} \subset V_1 - V_2 - \text{Int}(A(r_1)) - \text{Int}(B(r_2)).$$
Then it is easy to see that for each \(x \in X \) with \(d(p, x) < \delta \) and for each integer \(m \)

\[
d(h^m(p), h^m(x)) < \varepsilon.
\]

Therefore \(h \) is regular at every point of \(X \) except for \(a \) and \(b \), and the proof is complete.

§ 3. Another application of bulging sequences.

Let \(X \) be a separable metric space and let \(f \) be a continuous mapping of \(X \) into itself. For each point \(x \in X \) the set \(\bigcup_{n=1}^{\infty} f^n(x) \) will be said to be a positive half-orbit of \(x \). Let \(P(f) \) be the set of points whose positive half-orbits are everywhere dense in \(X \) and put \(Q(f) = X - P(f) \). It is easy to see that if \(P(f) = \emptyset \) then \(P(f) \) is everywhere dense in \(X \). Now we prove the following.

Theorem 5. Let \(X \) be a locally compact, non-compact, separable, metric space and let \(f \) be a continuous mapping of \(X \) into itself. Then \(Q(f) \) is everywhere dense in \(X \).

Proof. Suppose on the contrary that \(Q(f) \) is not everywhere dense in \(X \). Then there exist a point \(p \) and a neighbourhood \(U \) of \(p \) such that \(Q(f) \cap U = \emptyset \) (i.e. \(U \subseteq P(f) \)). Since \(X \) is locally compact, there exists a neighbourhood \(V \) of \(p \) with \(\overline{V} \subseteq U \) such that \(\overline{V} \) is compact.

Now we prove that \(\{f^n(\overline{V})\} \) is a bulging sequence. In fact, if \(\{f^n(\overline{V})\} \) is not a bulging sequence, then the set \(W = \bigcup_{n=0}^{\infty} f^n(\overline{V}) \) is compact by Lemma 1. Since \(\overline{V} \subseteq U \subseteq P(f) \), \(W = \overline{W} = X \) is compact, which is a contradiction. Therefore \(\{f^n(\overline{V})\} \) is a bulging sequence.

Then by Lemma 3 there exists a point \(q \in \overline{V} \) such that \(f^n(q) \in V \) for every natural number \(n \). Therefore \(q \in Q(f) \). Since \(q \in \overline{V} \subseteq U \), we have \(q \in P(f) \), which is also a contradiction, and the proof is complete.

Corollary. Let \(f \) be a continuous mapping of \(E^n \) into itself. Then \(Q(f) \), i.e. the set of points whose positive half-orbits are not everywhere dense in \(E^n \), is everywhere dense in \(E^n \).

Remark 1. A.S. Besicovitch [1] has shown that there exists a homeomorphism of the plane onto itself such that there exists a point whose positive half-orbit by this homeomorphism is everywhere dense.
On the regularity of homeomorphisms of E^n

on the plane. His statement that by this homeomorphism the positive half-orbit of every point of the plane except for the origin is everywhere dense on the plane is erroneous, as he has shown in his recent paper [2]. The fault of his assertion can also be seen by the above Corollary.

Remark 2. If h is a homeomorphism of E^n onto itself, then the set $Q(f)$ will be seen to be an F_σ without difficulty.

Department of Mathematics, Tokyo Institute of Technology
and
Department of Mathematics, Osaka University

References