文章の表示メディアと表示形式が
文章理解に与える影響

清原一男*・中山実*・木村博茂**・清水英夫***・清水康敬**
東京工業大学教育工学開発センター*
東京電力(株)電力通信部**
国立教育政策研究所教育研究情報センター***

本研究では、印刷物による提示とコンピュータ画面の提示による文章理解の違いを調べ、わかりやすい文章提示の方法を検討した。文章の理解度を内容に関するテスト成績で調べた。その結果、表示メディアについては、提示方法によらず印刷物がディスプレイに比べて良いことが分かった。また、LCD が CRT よりも理解度において優れていることが分かった。さらに、すべての表示メディアにおいて、明朝体と比べてゴシック体の方が文章理解において成績が良い事を明らかにした。

キーワード：文章理解、ディスプレイ装置、文字フォント、文字サイズ

1. はじめに

コンピュータ端末やビデオディスプレイは、VDT 作業だけでなく教育や娯楽をはじめ、日常的に利用されるようになってきた。また、資源節約や流通、内容更新の简便化の観点から、ペーパーレス化や電子教育メディア化も進んでいる。しかし、参照性や保持の観点から紙メディアは依然多く用いられている。これらのメディアで文字情報が中心に伝達されており、教育における教科書やマニュアル、資料などでは文字情報は非常に重要である。

2002年9月17日受理

* Kazuaki Kiyohara*, Minoru Nakayama*, Hiroshige Kimura**, Hideo Shimizu** and Yasutaka Shimizu**:
A Influence of Display Media and Presentation Style for Sentence Understanding.

* CRADLE(The Center for Research and Development of Educational Technology), Tokyo Institute of Technology, 2-12-1, O-okayama, Meguro-ku, Tokyo 152-8552 Japan

** Tokyo Electric Power Co., Ltd., 1-1-3, Uchisaiwai cho, Chiyoda-ku, Tokyo 100-8560 Japan

*** Center for Educational Resources, National Institute for Educational Policy Research, 6-5-22, Shimo-Meguro, Meguro-ku, Tokyo 153-8681 Japan

Vol. 27, No. 2 (2003)
一方、LCD は省スペース・省電力に優れており、ノートパソコンを中心に普及している表示装置である。LCD では、表示画素である 1 ドットが 1 素子で構成されているため、表示に歪みや生じない。また、一つのドットは一度表示されると次に更新されるまで表示され続けるため、「ちらつき」は生じにくい。ただし、一部の液晶の応答速度は遅いために動きの速い動画などでは残像を感じることがある。

このように、物理的特性の異なる表示メディアで文章を表示した場合、文章の視覚認知に影響を与えると考えられる。そのため、読み過程や文章の理解にも影響を与えられる。これまでの研究では、英文について印刷物と CRT を比較した結果、有意な違いがないとする結果が報告されている(Oborne & Holton, 1988)。漢字文字列を用いて LCD と CRT の視認性と可読性を調べた結果、文字検索では LCD の方が検索速度が速く、技術文書の音読では CRT の方が速く、明確な違いが示されなかった(績田, 1997)。また、Dillon(1992)は、これらの評価にはさまざまな要因が実験結果に影響することを述べ、読み過程と評価指標の観点からこの種の研究アプローチを論じている。これらに対し本研究では、文字情報の伝達は内容の伝達が目的であることから、限られた時間内での文章提示と理解に関して、表示メディアによる理解への影響を定量的に調べようとするものである(清原ほか, 1999, 2001)。また、文字フォントの種類や大きさも文章理解に影響を与える。例えば、ディスプレイ上では文字が大きい方が音読速度は速くなる(吉田, 1985)。すなわち、文字のフォントや大きさは読みや理解に影響を与える要因である。

そこで、本研究では表示メディアおよび文字フォント、フォントサイズの文章理解への影響を調べることを目標とした。具体的には以下の 3 点について検討した。

(1) 表示メディアによる文章理解の違いを実験的に明らかにする。
(2) 文章理解における表示する文字数による影響を明らかにする。また、文字数が多い場合にページめくりやスクロールの提示条件の影響を明らかにする。
(3) 表示メディアに適した文字フォントや大きさを検討する。

2. 実験方法

2.1. 実験条件

(1) 表示メディアによる文章理解の比較

文章を一定時間表示し、提示された文章の内容に関する質問を行った。その成績を文章の理解度として、各表示メディアの文章理解への影響を比較した。実験状況を図 1 に示す。LCD と CRT の解像度は、LCD では 1280×1024 ドット(0.28mm/dot), CRT では1280×1024ドット(0.26mm/dot)であった。

文章の提示面積を一定とするために、文章の提示を B5用紙サイズに統一した。そのため LCD と CRT の提示条件で、B5用紙サイズと同じ大きさのウィンドウを画面表示し、ウィンドウ内に印刷物と同じレイアウトで提示した。印刷物は手に持って読むことができるので、コンピュータ・ディスプレイで表示する場合も特に観視条件を定めず、被験者が画面を見やすい条件で実験を行った。

B5用紙に標準的な条件で記述した場合、明朝体のフォントサイズ10.5ポイント(点)で約1500文字(32文字×46行=1472文字)が記述できる。本研究ではプロポーションナルフォントで表示するために、文章によって表示される文字数が異なる。また、実験目的が文章理解であることから、できるだけ意味のある文章を提示した。このため、表示される文字数がおよそ1500文字となる文章を選択した。

また、表示面の物理的な条件として、画面の明るさがある。特にコンピュータディスプレイでは、画面のまぶしさ(グレア)や天井光による反射グレアなどが影響を与える。室内の蛍光灯下での印刷物の輝度は、通常の条件で文章部分で90cd/㎡であった。そこで、LCD と CRT でもこれに合わせてほぼ同程度

図 1 実験の形態図

日本教育工学会論文誌／日本教育工学雑誌（Jpn. J. Educ. Technol.）
(3) 字文字写文と大きさに関する提示実験
本実験では、フォントを2種類、文字の大きさを6段階に変化させた。フォントの種類は広く利用されている明朝体とゴシック体を用いた。文字の大きさは、8ポイントから18ポイントまで、2ポイントずつ変化させた。
これらの条件で(1)と同様に印刷物、LCD、CRTで文章を表示して、文章の理解度を比較した。

2.2 実験の手順
提示文章と課題による内容の理解度は、以下の手順で測定した。実験手順を図2に示す。
(1) 各被験者の記憶に関する特性を計測するために後述する記号課題を行った。
(2) 文章の理解度を調べる文章課題で実験を行った。
文章の提示はそれぞれの表示メディアで行った。
1つの提示文章ごとに、内容に関する問題を10問出題し10点満点で評価した。提示文章はランダムな順とした。これを文章課題とし、各表示メディアごとに5文章課題を与えた。
記号課題、文章課題とも提示内容に関する問題提示と回答の収集は、記号や文章を提示したディスプレイとは異なるノートパソコンで同一の条件で行った。問題提示と回答の収集に別のノートパソコンを用いたのは、表示メディアによらず同一の条件で実施するためである。

2.3 記号課題
実験において、文章理解は様々な要因の影響を受ける。そこで、被験者特性を検査し、文章課題の得点を規格化するために本課題を実施した。
記号課題はアルファベット4文字からなる無意味づきの対を15対羅列したもので、記憶する対関連学習課題である。
提示内容を学習した後、「ACEG と BDGF は対である」の形式の10問の問題文を「TRUE」か「FALSE」による強制選択回答(2AFC: 2 alternative forced choice)で真偽判定させた。記号課題の提示時間は2分30秒、問題への回答時間は1分30秒とした。これらは時間門制実験によって決定した。また記号課題は提示の都度、コンピュータでランダムに生成した。このため、記号課題を学習しても、学習効果による得点の変化はほとんどなかった。

2.4 文章課題
文章課題では、文章を提示してその内容の理解度を同様の方法で調べた。
提示文章の内容は、被験者が先行知識を持たず、か
つ平易に理解できるものとして百科事典（日立デジタル平凡社，1998）の説明文を用いた。例えば、「ニシノ生態」や「ユーロスタビシアの社会構造」などの説明文である。提示文章の内容は「文化」、「美術」、「動植物」、「世界」、「日本」で検えて課題セットを構成した。

これは、前述の実験被験者の先行知識などの属性を考慮した上で、選択した。なお、いずれの課題内容も実験後に被験者に確認したところ、未知の内容であった。

文章の提示時間は、0.1秒/文字として設定した。よって1ページ約1000字の場合、100秒とした。同様に1ページ約1500字の場合は150秒、1ページ500字の場合は50秒とした。この提示時間は、以下の先行研究に基づいて決めた。「英語の場合、つうの読みの速度は1分あたり200～300字である（神部，1998）。英語においては、文章の内容を正しく把握する方法のできる読み速度は1分あたり200～300字の範囲（神部，1998）とされる。また、英語の語数と日本語の文字数の対応については、『英語の1語の平均文字数を4.4文字と仮定し、これにスペース分を加えると、1.3文字は文字数で7.2字に対応する』（神部，1998）の結果に基づいた。これより、日本語の場合に文章の内容がとれる読み速度を数で示すと、1秒間に7.7から11.5字の範囲までである。本研究では、比較的平易な文章であることを実験の条件を考慮して、10字/秒の音読速度とした。

提示文章の例として1500字における画面表示例を図3に示す。提示文章に対する質問は1提示文章につき10題を1分30秒で実施した。文章の理解度を測定する課題の例を図4に示す。質問は記号課題と同様に、提示文章の内容に関する肯定か否定文になっている。これら質問文の真偽について、被験者には「TRUE」と「FALSE」の二択選択回答（2AFC）をさせた。

3. 表示メディアと提示方法の影響

3.1. 文章の提示方法

ここでは、2.1に示した(1)と(2)について以下の3つの実験結果を比較した。

文章の提示は1ページによる提示のみではない。一般的に、印刷物ではページめくりスタイルでの提示、コンピュータにおいてはスクロールによる提示も用いられている。そのため、以下のように3つの文章の提示条件を設定した。

(1) 1ページ提示：1ページに1500字を表示したもの。
(2) ページめくりスタイルによる提示：1ページに500字とし、1ページから3ページ分までをページめくりで提示したもの、すなわち、表示文字数はページ数によって500, 1000, 1500文字となる。したがって、手に取れる印刷物以外のLCDとCRTでは、2ページにわたって見ることはできない。
(3) スクロールによる提示：1ページに500字とし、2ページから3ページ分までをページめくりで提示したものの、すなわち、表示文字数はページ数
によって1000，1500文字となる。この提示では任意の場所を1ページ相当分見ることができる。ただし、印刷物メディアではスクロール操作ができないので、この条件ではLCDとCRTだけで行った。

なお、いずれの条件でも表示された文字の大きさは明朝体10.5ptである。

3.2 印刷物，LCD，CRTの比較結果

実験は、図2の手順で行った。まず、記号課題を2題実施した。その後、文章課題を表示メディアごとに5課題、合計15課題を行った。表示メディアの順序効果を考慮して、被験者によって提示順をランダムにした。

被験者は、大学生・大学院生10名である。よって、各表示メディアごとに5課題×10名の50試行の結果が収集できた。

提示内容に対する文章の理解度を、文章課題の成績で比較した。なお、個人差や試行回数による影響を取り除くため、各表示メディアによる実験セッションごとに実施した記号課題を用いて規格化した。すなわち、記号課題の成績をRs、文章課題の成績をRpとするとき、規格化した理解度をRp/Rsで定義する。これを、各文章の理解度とした。本研究では、単純な内容の記憶-再生ではなく、文章内容の理解を評価しようとした。そこで、単純な記憶-再生の個人能力に対する理解の度合を本理解度で評価した。

1ページに1500字を表示させた実験における各表示メディアの成績の結果を図5に示す。図では、各表示メディアごとに、前述の理解度の平均値を示している。

図からわかるように、文章の理解度は印刷物，LCD，CRTの順に下がっている。本実験は被験者内計画であるので、分散分析によって理解度を分析した。このうち、文章課題の練習要因と表題メニューメディアと練習の交互作用は有意ではないことから残差項ブローニングして、表示メディアと被験者要因の効果を分析した。その結果、表示メディアの要因は、5%水準で有意であった（F（2,120）=5.2，p<0.05）。すなわち、表示メディアによって理解度に有意な違いがあることがわかった。

表示メディア間の違いを明確にするために、3つの表示メディアの中から2つの表示メディア毎にt検定を行った。その結果、印刷物とCRTにおける理解度の間に5%水準で有意な差が認められた（t=2.2，df=98，p<0.05）。印刷物とLCD、LCDとCRTの間には、有意な差は認められなかった。

このことから、文章理解においては印刷物の理解度が最も高く、CRTによる表示では印刷物で提示する場合よりも有意に理解度が低いことが明らかになった。

これは、印刷物では表示品質としての解像度が高いため、文字が読み易いためと考えられる。また、ちらつきなどの表示メディアの影響が少ない順に理解度が良くならない。

3.3 ページめくり条件の結果

提示される文字情報が、1〜3ページにわたる情報量における表示メディアと理解度の関係を調べた。

実験は、前節と同様の方法で行った。ページめくりは被験者がコンピュータ・キーボードを操作して行った。文章の提示時間は、2章の実験方法に述べた通りである。文章提示後、理解度の測定を行った。本実験の被験者は、大学生・大学院生6名である。

ページめくり提示の実験での理解度の結果を、図6に示す。図では提示されたページ数による表示文字数における、表示メディアごとの理解度をもとめた。各表
示文字数の条件では、印刷物の理解度がそれぞれ最も高い。

前節と同様の分析によって表示メディア間で \(t \) 検定を行った結果、1ページ分(500字)と2ページ分(1000字)においては、理解度有意差は見られなかった。また、3ページ分(1500字)の提示のとき、印刷物と CRTの間で5%水準の有意差が認められた(\(t=2.7, df=58, p<0.05 \))。

この結果は、1500字を1ページとして提示した図3の結果と一致している。ページ数が少なく提示文字数が少ない場合では、表示メディア間での理解度には有意な差はなかった。

3.4 スクロール表示の結果

前節のページめくりに対して、スクロール操作で文章を読む場合の理解度への影響を調べた。

この提示方法はコンピュータ画面ですでに表示できなかったため、印刷物では行なわなかった。スクロール表示を行うため、提示文字数は2ページ分(1000字)と3ページ分(1500字)とした。なお、画面スクロールの操作は、被験者が読みに応じて操作した。文章の提示時間は、前述の通りである。

本実験の被験者は、大学生・大学院生6名である。

スクロール表示での理解度の結果を図7に示す。図では2ページと3ページ提示における、各表示メディアでの理解度の平均値を示す。

2、3ページの表示とも、LCDによる表示の方が理解度が高い。3.2節と同様の分析によって表示メディア間で \(t \) 検定を行った結果、3ページ分(1500字)のとき、LCDと CRTの間で有意傾向が見られた(\(t=1.9, df=58, p=0.07 \))が、2ページ分(1000字)では有意差は見られなかった。

文字数が多い場合に表示メディア間で有意差が現れる傾向は、図5の1500字を1ページで表示した場合の結果と一致する。このことから文字数が増えると、表示メディア間で文章理解に差が大きく現れると言える。表示形式よりも文字数が影響を与えるのは、理解度を評価したためとも考えられる。また、コンピュータ画面におけるページめくり操作は、同一の操作である。それにもかかわらず、CRTとLCDによる画面提示では理解度に差が見られた。このことから、表示メディアそのものが文章理解に影響を与えると考えられる。

3.5 主観評価による結果

前節までに述べたように、文章が1500文字の長い文章である場合に、ディスプレイの特性が文章の理解度に有意に影響を与えることが明らかに、ディスプレイの見やすさなどが影響を与えていると考えられる。ここから、表示について被験者に実施した主観評価の結果を検討した。

主観評価は、1500字の表示実験の後に23項目(5選択肢の相対尺度)の質問紙によって実施した。項目はいずれも実験における表示に関する質問項目である。質問紙への有効回答者は60名であった。

回答結果をPromax解による斜解けで因子分析したところ、表1に示すように3因子が抽出され、合計寄与率は61.3%である。各因子を構成する項目の内容から、第1因子は「表示レイアウト」、第2因子は「見やすさ」、第3因子は「表示形式」とした。

<table>
<thead>
<tr>
<th>因子1</th>
<th>因子2</th>
<th>因子3</th>
</tr>
</thead>
<tbody>
<tr>
<td>表示レイアウト</td>
<td>表示レイアウト</td>
<td>表示レイアウト</td>
</tr>
<tr>
<td>寄与率(合計寄与率=61.3%)</td>
<td>25.1%</td>
<td>20.2%</td>
</tr>
</tbody>
</table>

日本教育工学会論文誌 / 日本教育工学雑誌（Jpn. J. Educ. Technol.）
表1では、因子負荷量が0.8以上の項目だけを列挙している。これらの項目によって各因子の違いを調べた。表1で各因子を構成する各因子の評価値の平均値を因子成績として、3つの表示メディアごとに集計した。集計結果を図8の棒グラフに示す。表示メディアの影響を明らかにするために、各因子成績ごとに表示メディアを要因とする一元配置分散分析で調べた。その結果、第2因子の「見やすさ」では、表示メディアの要因が1%水準で有意であり（F(2,57)=7.1, p<0.01）、印刷物での理解度がLCDよりは5%水準で、CRTよりは1%水準で有意に高い。また、「表示形態」では、印刷物での理解度がLCDよりも1%水準で有意に高い。

これらの結果から、主観評価においても印刷物の文字が「見やすさ」の点で、LCDやCRTよりも高く、評価されていることがわかる。このような「見やすさ」が理解度に影響を与えていると考えられる。

4. 文字フォントと大きさによる影響

本章では、各表示メディアにおける文字フォントや文字サイズの影響を調べた。

4.1 文章の提示方法

1ページに様々なフォントサイズで文章を提示して、理解度を測定して内容理解に適した文字フォントとフォントサイズを検討した。文字フォントはゴシック体と明朝体2種類、フォントサイズは8、10、12、14、16、18ptの6種類、表示メディアを印刷物、LCD、CRTの3種類の36の提示条件で比較した。

提示文章は、1ページ1000字（26字×38行；実際の提示文章の平均値は932文字）とした。この形式で文字フォントサイズを変化させた。18ptで表示する場合には、表示面全体に提示される。この提示文章用いる文章課題は1つの提示条件について5課題づつ実施した。

なお、被験者の慣らさなどの提示条件への違いを抑制するために、フォントサイズを2グループ化（8,12,16pt）、（10,14,18pt）に2の文字フォントをそれぞれ割り振った4つの実験セッションを設けて、大学生、大学院生、被験者6人にランダムな順で実験を行った。また、それぞれの実験セッション内においても提示するフォントサイズはランダムな順にした。

4.2 表示メディアによる比較結果

文字フォントと文字サイズによる文章の理解度への影響を調べるため、各フォントごとにまとめた。

(1) ゴシック体

ゴシック体における成績を図9に示す。図から分かりるように、いずれのフォントサイズでも印刷物の成績がもっとも高かった。また、前章の実験結果と同様にほんどのフォントサイズで、印刷物、LCD、CRTの順に成績が下がった。

表示メディアとフォントサイズを要因とする多重配置分散分析を行ったところ、表示メディアとフォントサイズとともに有意であった（表示メディア：F(2,522)=14.9, p<0.01；フォントサイズ：F(5,522)=2.5, p<0.05）。交互作用は有意ではなかった。Tukey法による多重比較の結果、印刷物の理解度が1%水準で有意に高かった。

フォントサイズごとに表示メディアの理解度をt検定により比較した結果、フォントサイズが8、10、12ptで

Vol. 27, No. 2 (2003)
日本の教育情報学会論文誌／日本教育工学雑誌（Jpn. J. Educ. Technol.）

図9 ゴシック体文字を表示した場合の結果

図10 明朝体文字を表示した場合の結果

は印刷物とCRTの間で1%水準で有意な差が認められた。10ptでは、LCDとCRTの間に5%水準で有意な差が認められた。また、18ptでは印刷物とCRTの間の有意傾向（p<0.10）が見られた。

（2）明朝体

明朝体における文章の理解度を図10に示す。明朝体においても、いずれのフォントサイズにおいても印刷物の理解度がもっとも高い。また、理解度は各フォントサイズとも、印刷物、LCD、CRTの順となった。

表示メディアとフォントサイズを要因とする2元配置分散分析を行ったところ、表示メディアとフォントサイズとも有意であった（表示メディア：F(2,552)=15.0, p<0.01；フォントサイズ：F(5,552)=2.2, p=0.05）。交互作用は有意ではなかった。Tukey法による多重比較の結果、印刷物の理解度が1%水準で有意に高かった。

フォントサイズごとに表示メディアの理解度をt検定により比較した結果、フォントサイズが8ptでは5%水準で有意な差が認められた。10ptでは、印刷物とCRTの間に5%水準で有意な差が、LCDとCRTの間に5%水準で有意な差が認められた。これらのことから、明朝体においても、ゴシック体と同様にフォントサイズが小さい8ptや10ptのフォントサイズが小さい場合には、表示メディア間の理解度が大きく異なることがわかった。

（3）表示メディアごとの比較

文字フォントとフォントサイズの影響を調べるためには、表示メディアごとに文字フォントとフォントサイズを要因とする二元配置分散分析を行った。その結果、すべての表示メディアにおいて、フォントの要因が有意であった（印刷物：F(1,348)=7.1, p<0.01；LCD：F(1,348)=11.2, p<0.01；CRT：F(1,348)=10.5, p<0.01）。いずれも、ゴシック体が明朝体に比べて理解度が高かった。また、いずれの結果においてもフォントとフォントサイズの交互作用は有意ではなかった。このことから、フォントサイズにかかわらずゴシック体による表示の方が理解度が有意に高いくことを示している。
ただし、CRTではフォントサイズの要因が有義であった（F(5,348)=4.2，p=0.01）鼠フットオサイズによる理解度の影響を調べるために、フォントサイズ間で成績の多重比較を行った。その結果、理解度はフォントサイズ12ptと16ptが他のサイズよりも有意に高く、フォントサイズ8ptで有意に低かった。なお、フォントサイズ14ptでの理解度は、12,16ptの場合よりも有意に低かった。

4.3 考察

本実験におけるフォントサイズの変化によって、2つの影響が考えられる。

1つは、文字の表示品質や読みやすさの点である。コンピュータディスプレイの場合、小さなフォントサイズでは、文字が潰れたりもじみの影響を受けやすい。ディスプレイ表示解像度の問題から、文字フォントは正確に表現されていない文字も多くある。ゴシック体の場合は、描画線幅が一定であるが、明朝体の場合は線の太さも変化するため、これらの影響を受けやすいと考えられる。これらのことから、フォントサイズが小さい場合に理解度が低下したと考えられる。また、ゴシック体に比べて、明朝体による表示の方がゴシック体よりも理解度が低くなったと考えられる。

もう1つは、文章の表示領域の面積変化である。実験方法でも述べたように、同一文章の文字フォントサイズを変化させることによって、表示領域の大きさも変わる。18ptでの表示面積は、8ptの場合の約5倍になる。表示面積の拡大は、注視領域の拡大を意味する。文章を理解するためには、文章のまとまりごとに視点移動が頻繁に起こるとされる（神部，1998）。文字が大きくならたと見やすくなっても、必要以上に大きくなると、文章のまとまりを追跡する視点移動も頻繁になるなどの影響が現れると考えられる。そのため、18ptではやや理解度が低下するものと考えられる。また、CRTでの理解度が12ptと16ptの2つのフォントサイズで最大になると考えられる。

本実験における提示文章の長さは、前章における2ページ表示の実験と同じに1000字（明朝体10.5pt）である。前章における表示文字数が1000字の条件は、1ページに500字を画面全体に表示する形式で実験した結果、表示メディア間には有意差はなかった。本実験では既に述べたように、明朝体10ptにおいて表示メディア間で有意な差が認められた。この結果の違いは、字間や行間などの表示レイアウトに関係すると考えられる。すなわち、本実験では18ptの文字を用いた場合でも、1ページで表示できるようにフォントサイズに対応した字間や行間にした。このため、フォントサイズが小さい条件では、相対的に字間や行間が小さくなるため、読みづらい印象を受ける。高橋ほか（1992）は字間や行間が読みやすい影響を指摘しており、このような要因が影響を与えたと考えられる。フォントと表示のレイアウトとの関係が文章の理解度に与える影響については、今後の課題である。

5.まとめ

本稿では、印刷物、LCD、CRTの表示メディアにおける文章の理解度を実験的に調べた。その結果、以下のが明らかになった。

1）提示する文章として1500字の解説文の内容を理解する課題では、印刷物、LCD、CRTの順に理解度が低下した。印刷物とCRTにおける理解度には5%水準で有意な差があった。表示メディアに対する主観評価の結果では、「見やすさ」の因子において印刷物の因子成績はLCDやCRTよりも有意に高かった。このことから、表示メディアの見やすさが理解度に影響していると考えられる。

2）提示する文章を500字ずつ3ページに分けて表示した場合でも、印刷物、LCD、CRTの順に理解度が低下した。印刷物とCRTにおける理解度には5%水準で有意な差があった。提示ページ数が1ページ（500字）や2ページ（1000字）の場合は、表示メディア間での理解度には有意差は認められなかった。コンピュータ・ディスプレイにおけるスクロール表示の場合では、3ページの表示においてLCDの理解度の方がCRTの場合よりも高い傾向が見られた。

3）提示フォントによる違いを調べた結果、フォントサイズを変化させても理解度は印刷物、LCD、CRTの順であった。特にフォントサイズが小さい提示条件では印刷物における理解度が有意に高かった。また、ゴシック体と明朝体による理解度を比較したところ、ゴシック体の方が有意に高かった。フォントサイズによる影響は、CRTで特に顕著であることがわかった。

文章の理解においては、表示メディアや文字フォントだけでなく、表示のレイアウトなどの影響については、今後の課題である。

In this research, it is examined the difference of the sentence understanding across three display devices: printed material, computer CRT and LCD. As a result, a degree of understanding content for printed material is significantly the highest among three media. LCD shows better performance of the understanding than for CRT. Comparing the performance between Gothic and Mincho font sets, performances for using Gothic font are significantly higher than for using Mincho font across three media. The factor of font size influences the performance in smaller font size for CRT display.

KEY WORDS: SENTENCE UNDERSTANDING, COMPUTER DISPLAY, CHARACTER FONT, CHARACTER SIZE