INTRODUCTION

The gut microbiome plays a key role in a wide range of host-related processes and has a profound effect on human health. Comparative analyses of the human gut microbiome have revealed its substantial...
variation in species and gene composition within a variety of disease states and even among healthy individuals but may fall short of providing a comprehensive understanding of the impact of this variation on the microbial community and on the host (1). It has been argued that an imbalance in microbial population in the intestinal tract is a trigger factor for gut inflammation. Inflammatory bowel disease arises from disruption of immune tolerance to the gut commensal microbes, leading to chronic intestinal inflammation and mucosal damage in genetically predisposed hosts (2). Many reports have shown that the integrity of gut microbiome is important to prevent the inflammatory bowel disease (2). In addition, the relationship between gut microbiome and development of colorectal cancer was suggested in some reports (3).

Herbal medicines can affect health via the gut microbiome in two ways. Like ginseng, a variety of herbal medicines are known to provide pharmacological effect only after being processed by bacteria in the gut. The list includes the dried fruits of Gardenia jasminoides, containing the compound geniposide, which is converted by gut microbes into its active form, genipin, another anti-inflammatory and anticancer compound. Similarly, the root of the liquorice plant, Glycyrrhiza glabra, contains glycyrrhizin, which can be processed by gut microbes into 18β-glycyrrhetic acid, which is effective in the treatment of peptic ulcers but also has antiviral and antifungal activities. In other way, certain ingredients of herbal medicines influence the microbial composition in the gut. For example, extracts from the Ginkgo leaf have been shown to increase the abundance of symbiotic bacteria such as Lactobacillus and Bifidobacterium in the gut. These microbes have been linked with a number of health benefits in the human host; in particular, they can modulate the immune system as to reduce the risk of autoimmune diseases like type-I diabetes mellitus (2).

Dai-kenchu-to (DKT) is used for the treatment of adhesive bowel obstruction and a feeling of coldness in the abdomen (4-8). The pharmacological action of DKT is gradually understood, and several studies have shown that DKT accelerates the transit of gastrointestinal contents (9-13). Since the delayed transit of luminal contents could be responsible for the bacterial overgrowth in the gut (14-17), DKT may prohibit the harmful microbial activities. It has also been reported that DKT increases intestinal and portal blood flow (7, 18-21), resulting in the reduction of blood ammonia level after hepatectomy (9) and an anti-inflammation (11). We have previously reported that DKT prevents the inflammatory cytokine production in the gut and bacterial translocation in the rat model with fast stress (4). In addition, we have shown that DKT suppresses the inflammatory response after surgical operation in human (6).

The aim of this study was to evaluate the effect of DKT on the microbial diversity in inflamed gut using the rat model with fast stress.

MATERIALS AND METHODS

Dai-kenchu-to (DKT)

A commercially available kampo medicine, DKT, was purchased from Tumura Co. Ltd (Tokyo, Japan). It was prepared as a dried extract powder of Ginseng radix, Zanthoxyli fructus and Zingiberis siccatum rhizome in the ratio of 3 : 2 : 5 respectively. DKT (15 g) has been used for the patients with adhesive ileus. The dose of DKT for the rats was calculated to be 300 mg/kg from the amount of DKT (15 g) administered to a patient with 50 kg body weight.

Animals

Male Wister rats (200 to 220 g of body weight, 6-week-old) were purchased from Charles River Inc. (Yokohama, Japan). The experimental protocol use in this study was reviewed and approved by the animal committee of the Institute of Health Biosciences, the University of Tokushima Graduate School. Animals were checked to be specific-pathogen-free and housed under standard conditions (Room temperature 22 °C, humidity 50 ± 5%, 12 h/12 h light-dark cycle).

Experimental design

Four 6-week-old male were received the fast stress for 5 days as described previously (4). The three rats were administered daily with DKT (300 mg/kg/day) by oral gavage during the fast stress (DKT-group), and the remaining rat was kept without treatment for comparison (control group). The alteration of gut microbiome was evaluated by PCR-clone library method targeting the 16S ribosomal RNA gene (16S rDNA) of the stools collected at before and after fast stress.

Analysis of gut microbiome by sequencing the 16S rRNA gene clone libraries

To evaluate the effect of DKT on gut microbiome
of the fasted rats, we employed the sequencing analysis of 16S rRNA gene (16S rDNA) clone libraries method. DNAs were extracted from the rat feces according to the method described by Morita et al. (22), in which lysozyme and achromopeptidase were used as lytic enzymes. Bacterial 16S rDNA were amplified with the universal primers, 27F and 1492R (22). The amplicons were cloned into pGEM-T Easy Vector (Promega), and the libraries were constructed with Escherichia coli DH5α. From the each library, 96 colonies were randomly selected and the insert DNA fragment was amplified with primer SP6 and T7, whose annealing sites locate just outside the cloning site of the pGEM-T Easy Vector. The amplicons were purified, and their nucleotide sequences using the 27F as a sequencing primer were determined by Takara Bio Inc (Otsu, Shiga, Japan). Of the obtained sequences, low quality sequences were removed. The uncertain nucleotides at both ends were also trimmed. The assignment of each 16S rDNA sequence was done by Classifier program from the Ribosomal Database Project (22) with confidence level of over 80%. Sequences were aligned with Clustal W2 program and assembled into operational taxonomic units (OTUs) with the parameters of > 97% identity and > 90% alignment length, and the number of OUT was used to evaluate the diversity of gut microbiome. The phylogenetic tree was drawn by MEGA5 program.

RESULTS

< Control group >

Figure 1 and Figure 2 showed the influence of fast stress on microbiome in the intestine, Figure 1

![Figure 1](image1.png)

Figure 1 The phylogenetic tree of the microbiome component in control-group.

![Figure 2](image2.png)

Figure 2 The composition of microbiome as circle figure in control-group.
showed the tree of the microbiome component, Figure 2 showed the composition of microbiome as circle figure. In Control-group, Erysipelotrichaceae increased to 86% in after-fast stress, OTU of before-fast stress was 111 and after-fast stress was 46 (changing rate: 58%). The diversity of microbiome was severely decreased.

< DKT group >

Figure 3 and Figure 4 showed the effect of DKT on microbiome in the intestine after fast stress. Figure 3 showed the tree of the microbiome component, Figure 4 showed the composition of microbiome as circle figure. In DKT-group, diversity of microbiome was kept after fast stress (Lachnospiraceae : Ruminococcaceae : Coriobacteriales 54%, 22%, 5%). OTU of before-fast stress was 52 and after-fast stress with DKT was 55 (changing rate: 6%). DKT maintained the diversity of microbiome in fast stress model.

< Composition of microbiome change between the control and DKT group >

Figure 5 showed the component of microbiome. Compared with the microbiome of control-group, the variation of microbiome after-fast stress with DKT was not changed significantly. DKT maintained the diversity of microbiome almost normal condition.

Figure 6 showed the OTU changing rate. The OTU in control-group decreased to 42%, while the OTU in DKT-group maintained at 105% compared with before fast stress respectively.

Figure 3 The phylogenetic tree of the microbiome component in DKT-group.

Figure 4 The composition of microbiome as circle figure in DKT-group.
DISCUSSION

The global composition of the intestinal bacterial microbiome rather than the presence of single pathogens appear to be relevant for inflammatory bowel disease (IBD) pathogenesis and etiology. Analysis of bacterial 16S rRNA genes, amplified directly from complex communities, provides an efficient strategy to explore the bacterial diversity of complex microbiome. Alteration of the bacterial microbiome in mucosal inflammation reflects a metabolic imbalance of the complex microbial ecosystem with severe consequences for the mucosal barrier rather than disrupted defence to single microorganisms (1, 2).

The malnutrition is associated with cometabolism of microbiome and abnormal increase of microbiome is also associated with malnutrition (23).

In the inflammation and metaplasia, esophagitis and Barrett’s esophagus (intestinal metaplasia) are associated the microbiome change. Streptococcus is significantly decreased and the diversity also decrease in esophagitis and Barrett’s esophagus (24). Patients with inflammatory diseases and diarrhea show a complex pattern with high inter individual variability in microbiome. Bacterial diversity of non-inflammatory control is significantly higher than that of Crohn’s disease and ulcerative colitis patients, suggesting that reduced bacterial diversity in IBD is a disease specific feature (25). In this study, fast
stress induced the Erysipelotrichaceae sequence significantly. And the Mollicutes belong to the Erysipelotrichaceae, its increase is observed in abnormal diet intake (26). DKT maintains the diversity of microbiome and prevent the increase of Erysipelotrichaceae sequence. The exact role of this mechanism is obscure, and deserves further research.

In colon cancer (27), changing the microbiome is related the tumorigenesis through various events (e.g. infection, diet, stress, inflammation). Ginseng significantly inhibited colonic inflammation and tumorigenesis and concomitantly reduces proliferation and increased apoptosis through changing the diversity of microbiome. The epidermal growth factor receptor (EGFR) cascade is up-regulated in colonic tumors and ginseng significantly reduced EGFR activation and Cox-2 expression. Dietary ginseng altered colonic microbial diversity, and bacterial suppression with metronidazole reduced serum compound K following ginseng gavage. Furthermore, compound K significantly inhibits tumor xenograft growth. Ginseng inhibited colonic inflammation and tumorigenesis promoted by Western diet. The ginseng metabolite compound K contributes to the chemopreventive effects of this agent in colonic tumorigenesis. As DKT contains the ginseng which may relate this microbial diversity, diversity change in this study may deeply correlate to the ginseng (2).

The detail of the mechanism of the DKT for microbiome is unclear and further investigation is needed.

Fast stress induced the loss of diversity of microbiome and the DKT keeps the diversity. Unchanged microbiome characteristics associate with maintaining the intestinal activity. We suggest new mechanism of the DKT for anti-inflammatory effect is concerned with the microbiome.

CONCLUSION

DKT maintained the diversity of microbiome in fast stress model. Our data suggests the new mechanism of anti-inflammatory effect of DKT.

AUTHOR DISCLOSURES

Drs. Kozo Yoshikawa, Tomomi Kuwahara, Nobuhiko Kurita, Hirohiko Sato, Takashi Iwata, Shinya Morimoto, Tomohiko Miyatani, Hideya Kashihara, Chie Takasu have no conflicts of interest or financial ties to disclose.

Mitsuo Shimada has a financial tie to disclosure to the Tumura Co. Ltd (Tokyo, Japan).

ACKNOWLEDGEMENTS

This study was supported by Grant-in-aid for scientific research from the Japan Society for the Promotion of Science.

REFERENCE

