CASE REPORT

Unusual endoscopic findings of gastric neuroendocrine tumor

Kazuhiro Kishi 1,*, Akihiko Fujisawa 1, Minoru Horikita 1, Yoshihiro Nakai 2, Kazushi Ooshimo 2, Fumiko Kishi 1, Masako Kimura 1, Chun-che Lin 3, Tetsuji Takayama 4

Departments of 1Gastroenterology and 2Surgery, Kagawa Prefectural Shirotori Hospital, 3Department of Diagnostic Pathology, Faculty of Medicine, Kagawa University, Kagawa, 4Department of Gastroenterology and Oncology, Tokushima University, Tokushima, Japan

Abstract : Gastric neuroendocrine tumor (NET) is sometimes found as a submucosal tumor on upper gastrointestinal endoscopy. Gastric NET with malignant profile and neuroendocrine carcinoma (NEC) show various forms which are difficult to distinguish from gastric cancer and other disease. We report a case of a cauliflower-shaped NET of the stomach. A 61-year-old man was referred to our hospital with a complaint of abdominal fullness. Upper gastrointestinal endoscopic examination revealed an unusual, whitish cauliflower-shaped tumor that belongs to Borrmann type I on the lesser curvature of the gastric antrum. Histological examination of the biopsy specimen revealed NET G2, because the tumor cells were CD56- and synaptophysin-positive by immunohistochemical analysis. A distal gastrectomy with D2 lymphadenectomy was performed. A recurrence in the liver was revealed by follow up computed tomography after 11 months from operation. Combined chemotherapy with irinotecan (CPT-11) plus cisplatin (CDDP) was treated. The patient achieved a partial response, but he died after 31 months from gastrectomy. There is no independent, large-scaled prospective study and no standard treatment for gastric NETs with distant metastases. Our case is reported with a literature review of the treatment of metastatic gastric NET G2.

CASE REPORT

A 61-year-old Japanese male patient presented with a 1-month history of abdominal fullness. Patient interview revealed no particular past history, family history or social history. On physical examination, right upper quadrant or epigastric hard mass was easily palpable. A blood laboratory test showed anemia (hemoglobin 10.5 g/dl), hyperleukocytosis (10,800/mm3 with 7,660/mm3 of neutrophils), raised C-reactive protein (3.3 mg/dl) and elevated erythrocyte sedimentation rate (64 mm/hour). Serum CEA and CA19-9 were within normal range. Examination by esophagogastroduodenoscopy revealed a whitish cauliflower-shaped Borrmann type I tumor on the lesser curvature of the gastric antrum (Fig. 1). Histological biopsies of the lesion revealed the diagnosis of NET G2. Computed tomography (CT) showed a gastric tumor with another big mass which seems to be a lymphadenopathy around the posterior of the hepatic left lobe and epigastric lesion (Fig. 2). Whole body positron emission tomography (PET)/CT image demonstrates an intense uptake of 18F-fluo-2-deoxyglucose (FDG) in the lesser curvature of the stomach (SUVmax 10.4) and in several perigastric lymph nodes (SUVmax 5.3), but did not detect any distant metastasis. Endoscopic and transabdominal ultrasonography (EUS) showed an isoechogenic tumor mainly in the mucosal and submucosal layer and the tumor developed into deeper layer (Fig. 3). He underwent a distal gastrectomy with D2 lymphadenectomy. A Billroth type I anastomosis was done. The resected tumor showed Borrmann type I mass 6×7 cm in size. Microscopically, the tumor was composed of malignant large cells with rich cytoplasm, and large, round, clear nuclei. The tumor cells were arranged to form solid nests or sheet-like structures. Immunohistochemical analysis revealed that the tumor cells were positive for CD56 and synaptophysin, but negative for chromogranin A (Fig. 4). The tumor had infiltrated the subserosal layer and lymph node metastasis was found in 6 of 42 lymph nodes. The Ki-67 labeling index was 10%. These findings led to the diagnosis of NET G2 according to the 2010 WHO criteria. His performance status (PS) has been 3 after operation. Therefore, he was not treated by adjuvant chemotherapy. His PS improved into 1 by inpatient and outpatient of the gastrectomy.

Received for publication March 30, 2015; accepted April 28, 2015.

Address correspondence and reprint requests to Dr. Kazuhiro Kishi, Department of Gastroenterology, Higashi Tokushima Medical Center, National Hospital Organization, Tokushima, Japan

Keywords : NET, neuroendocrine carcinoma, gastric carcinoma, CD56, synaptophysin

INTRODUCTION

Neuroendocrine tumors (NET) were previously called carcinoid tumors (1). NET can be divided into five types of tumors according to World Health Organization (WHO) classification of tumors of the digestive system, 2010 : NET G1, NET G2, neuroendocrine carcinoma (NEC) (large cell or small cell type), mixed adeno-neuroendocrine carcinoma (MANEC), and hyperplastic and preneoplastic lesions (2). Most cases are classified to former three groups. NET is a rare neoplasm that includes carcinoid, neuroendocrine carcinoma and small cell carcinoma. G stands for grading according to mitotic count and Ki-67 index. NET G1 is usually benign, whereas NET G2 and NEC are malignant. Tumor capacity is measured by Ki-67 staining with Ki-67 index < 2% seen in G1 tumors, 3% -20% in G2 tumors, and > 20% tumor cell involvement in NEC (2). NEC is a relatively rare tumor in the stomach (3, 4). It exhibits aggressive growth which results in vascular invasion and early distant metastasis, and has a poor prognosis (5, 6).

Here we report a case of NET G2 in the stomach that showed an intriguing endoscopic finding.
Fig. 1 The esophagogastroduodenoscopy finding revealed a whitish cauliflower-shaped Borrmann type I tumor on the lesser curvature of the gastric antrum.

Fig. 2 Abdominal computed tomography (CT) findings of the patient. CT revealed a mass in the lesser curvature of the gastric antrum (a) and enlarged lymph nodes (b).

Fig. 3 Endoscopic (a) and transabdominal (b) ultrasonography showed an isoechoic mass located in the mucosal and submucosal layers and invaded partially into deeper layer.

Fig. 4 Hematoxylin and eosin (H&E) staining and immunohistochemical stainings of the tumor cells. Large cells with high nuclear to cytoplasm ratio (a). The cells were positive for CD56 (b) and synaptophysin (c). (a×400, b, c×200)
Gastric NEC is a rare tumor, which reportedly comprises 0.1-0.6% of gastric cancers (3, 7, 8). NEC is deeply invasive and metastatic. The diagnostic rate by biopsies under esophagogastroduodenoscopy is very low (11-27%) (9, 10), because the tumors of most cases contain adenocarcinoma components. The biopsied specimen of our case was immune-stained positively with synaptophysin and CD56. It comprises NET G2 and seems to be classified as a pure type according to the pathological examination of the resected tumor (5). The Ki-67 labeling index of this tumor was 10% in the component and the diagnosis was NET G2 according to the 2010 WHO classification. But the growth was very progressive and invasive. The clinical course of our case seems to be defined as carcinoma. Spampatti et al. (11) reported the case of gastric NET G1 with 6 mm in size and a Ki-67 of less than 2% which proceeded into 7 cm of NEC with both hepatic and massive peritoneal metastases (Ki-67 40%) after 8 years. Gastric NET G1 or G2 may have a malignant potential and should be followed up carefully. Large cell neuroendocrine carcinoma of the stomach is rare and also a small percentage of all gastric endocrine tumors (12). It is significantly more aggressive than that of gastric adenocarcinoma (12). Pathological examination of this component in our case is large cell type. The clinical course of large cell type NET G1 or G2 may be similar with gastric NEC.

Rindi et al. (13) classified gastric NETs into three types based on the clinical characteristics. Type I NETs are the most frequent (70-80% of all cases) and associated with type-A chronic atrophic gastritis. Type II NETs are rare and occur in association with Zollinger-Ellison syndrome in multiple endocrine neoplasia type I (MEN-1). Type III NETs are the second most common and occur in a sporadic and solitary large form. Our case had Helicobacter pylori positive gastritis, and his tumor is classified into type III gastric NET.

Apart from the regional lymph nodes, the liver is the most frequent site of NET and liver metastases are major prognostic factor of NET (14). Our patient with gastric NET G2 developed liver metastasis 11 months after gastrectomy. Shin et al. reported that one of eight patients who have gastric NET with liver metastases was G2 and others were NEC (15). Another factor, like unknown primary tumor as reported (15), other than histological grade may affect the prognosis.

61 cases of gastric endocrine carcinoma were reported with description or in the photo of the upper gastrointestinal endoscope. 13 cases (21%) were Bornmann type I, 25 cases (40%) were type II, 15 cases (24%) were type III, 1 case was type IV, 1 case was type V, and 5 cases were type 0 (IIa 1 case ; Iic 3 cases ; Iia+Iic 1 case). One case showed the morphology of submucosal tumor. A rare polypoid type early NEC in the stomach was reported (16). Endoscopic findings of the tumor also demonstrated a polypoid lesion with a broad stalk. The surface showed a white coat, erosion and lobulation and the macroscopic finding was unique and similar with the one of our case. The mass of our case is whitish Borrmann I and looks like cauliflower. The tumor infiltrated into the subserosa in association with lymphangi invasion. Gastric NEC arises predominantly from endocrine precursor cell clones that develop in the preceding adenocarcinoma component. These clones transform into NEC and the NEC develops rapidly in the submucosal and deeper layer (17). According to the histological examination, a wide range of necrosis by the metastatic cancer was observed in the lymphatic ducts of the tumor. Probably those things contribute to the color and the shape of the tumor.

Treatment of localized gastric NETs usually involves surgical resection, and surgery is the only curative treatment for NETs. Chemotherapy has recently been recommended to be administered to NEC patients following gastrectomy. There is no standardized chemotherapy for gastric NET. Chemotherapeutic regimens including cisplatin, irinotecan, etoposide, doxorubicin, and vincristine are reported. Kulkke et al. (18) reported a very low response rate to cisplatin plus irinotecan for extra-pulmonary NETs, however, Okita et al. (10) reported the response rate to cisplatin plus irinotecan for gastric poorly differentiated NEC was 75%. Large-scale retrospective analyses for advanced neuroendocrine carcinoma of the digestive system by Japanese group demonstrate that irinotecan plus cisplatin (IP) and etoposide plus cisplatin (EP) are the most commonly used regimens (19). IP was the most commonly selected regimen, especially for the gastrointestinal tract in the Japanese study (19), while EP was the most commonly selected regimen in the Nordic study (20). The response rate of IP was slightly better than that of EP for the treatment of NEC, even after adjusting patient background by multivariate analysis. The median overall survival of gastric NEC patients is 13.5 months. We chose IP chemotherapy and the overall survival of our case was much longer, although the tumor is classified into NET G2 and our case is hard to compare with the cases of NEC simply. Because a part of NET G2 actually embraces a very aggressive profile and has rather a G3-NET-like behavior, chemotherapy might become the first option therapy (21). However, gastric NETs are not discussed in independent, large-scaled prospective studies and tend to be excluded from clinical trials, because the cases are few (22). Systematic study of the treatment for NET G2 of digestive system should be considered in the future.

Somatostatin analogues (SSAs) have shown to be effective in the treatment of midgut NETs (23). Type I and II gastric NETs are gastrin-dependent and associated with conditions inducing hypergastrinemia. SSAs have been increasingly used in the treatment of patients with type I and II gastric NETs (24), based on their capability to lower the elevated gastrin levels and suppress enterochromaffin like cell hyperplasia. As stated above, our case seemed to belong to type III gastric NET and serum gastrin level in our case was within normal range (our case 184 pg/ml ; normal values 42-200 pg/ml) (11, 25). Management of Type III gastric NET is comparable to that used for gastric adenocarcinomas. SSAs are considered to be a beneficial treatment in well-differentiated NET G1 and might also be applied to control clinical symptoms in NET G2 with higher proliferation like our case (20).

Interferon alpha along with SSAs has been used as a treatment of midgut NETs, although often with potentially high toxicity (27). Everolimus, an inhibitor of mammalian target of rapamycin (mTOR), and sunitinib, an inhibitor of multi-targeted tyrosine kinase, are reported to give a statistically significant survival benefit in enteropancreatic NET (28, 29).

Recently, bevacizumab, a monoclonal antibody targeting vascular endothelial growth factor (VEGF), has shown promising results in gastroenteropancreatic NETs, because gastroenteropancreatic neuroendocrine tumors are known as hypervascular tumors with increased expressions of VEGF and VEGF receptors (30, 31). Table 1 summarizes clinical trials for gastroenteropancreatic NET G1/G2. The combination with bevacizumab, SSAs, cytotoxic chemotherapy or mTOR inhibitors may be a promising strategy in the patients with gastric NET G1/G2.
Table 1. Summary of the clinical trials for gastroenteropancreatic NET

<table>
<thead>
<tr>
<th>Regimen</th>
<th>Sites of NETs</th>
<th>No. of cases</th>
<th>Response rate (%)</th>
<th>median OS (months)</th>
<th>median PFS (months)</th>
<th>Author</th>
<th>year</th>
<th>Design</th>
</tr>
</thead>
<tbody>
<tr>
<td>streptozocin + doxorubicin</td>
<td>pancreas</td>
<td>38</td>
<td>69</td>
<td>26.4</td>
<td>18</td>
<td>Moertel et al. (32)</td>
<td>1992</td>
<td>Phase III</td>
</tr>
<tr>
<td>streptozocin + fluorouracil</td>
<td>pancreas</td>
<td>34</td>
<td>45</td>
<td>16.8</td>
<td>14</td>
<td>Moertel et al. (32)</td>
<td>1992</td>
<td>Phase III</td>
</tr>
<tr>
<td>chlorozotocin</td>
<td>pancreas</td>
<td>33</td>
<td>30</td>
<td>18</td>
<td>17</td>
<td>Moertel et al. (32)</td>
<td>1992</td>
<td>Phase III</td>
</tr>
<tr>
<td>dacarbazine</td>
<td>pancreas, intestine</td>
<td>50</td>
<td>34</td>
<td>19.3</td>
<td>N/R</td>
<td>Ramanathan et al. (33)</td>
<td>2001</td>
<td>Phase II</td>
</tr>
<tr>
<td>temozolomide + thalidomide</td>
<td>pancreas</td>
<td>11</td>
<td>25</td>
<td>Not reached</td>
<td>Not reached</td>
<td>Kulke et al. (35)</td>
<td>2006</td>
<td>Phase II</td>
</tr>
<tr>
<td>temozolomide</td>
<td>pancreas, gastrointestine, bronchus, thymus</td>
<td>36</td>
<td>14</td>
<td>16</td>
<td>7</td>
<td>Ekeblad et al. (39)</td>
<td>2007</td>
<td>Phase II</td>
</tr>
<tr>
<td>bevacizum + temozolomide</td>
<td>pancreas, midgut, bronchus, unknown</td>
<td>34</td>
<td>15</td>
<td>33.3</td>
<td>11</td>
<td>Chan et al. (37)</td>
<td>2012</td>
<td>Phase II</td>
</tr>
<tr>
<td>temozolomide + capecitabine</td>
<td>pancreas</td>
<td>30</td>
<td>70</td>
<td>Not reached</td>
<td>18</td>
<td>Strosberg et al. (38)</td>
<td>2011</td>
<td>Phase II</td>
</tr>
<tr>
<td>streptozocin + doxorubicin + fluorouracil</td>
<td>pancreas</td>
<td>84</td>
<td>39</td>
<td>27</td>
<td>18</td>
<td>Kouwanski et al. (39)</td>
<td>2004</td>
<td>Phase II</td>
</tr>
<tr>
<td>streptozocin + cyclophosphamide</td>
<td>gastrointestine</td>
<td>47</td>
<td>26</td>
<td>12.5</td>
<td>N/R</td>
<td>Moertel et al. (40)</td>
<td>1979</td>
<td></td>
</tr>
<tr>
<td>streptozocin + fluorouracil</td>
<td>gastrointestine</td>
<td>42</td>
<td>33</td>
<td>11.2</td>
<td>N/R</td>
<td>Engstrom et al. (41)</td>
<td>1984</td>
<td></td>
</tr>
<tr>
<td>dorubicin</td>
<td>gastrointestine</td>
<td>81</td>
<td>21</td>
<td>11.1</td>
<td>N/R</td>
<td>Douillard et al. (42)</td>
<td>2005</td>
<td>Phase II/III</td>
</tr>
<tr>
<td>streptozocin + fluorouracil</td>
<td>gastrointestine</td>
<td>80</td>
<td>22</td>
<td>14.9</td>
<td>N/R</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>streptozocin + fluorouracil</td>
<td>pancreas</td>
<td>85</td>
<td>16</td>
<td>15.7</td>
<td>4.5</td>
<td>Sun et al. (42)</td>
<td>2005</td>
<td>Phase II/III</td>
</tr>
<tr>
<td>cisplatin + etoposide</td>
<td>pancreas, gastrointestine (NET G1/G2, NEC)</td>
<td>36</td>
<td>55</td>
<td>19</td>
<td>N/R</td>
<td>Fjallsø et al. (43)</td>
<td>2001</td>
<td></td>
</tr>
<tr>
<td>cisplatin + irinotecan</td>
<td>pancreas, gastrointestine (NET G1/G2, NEC)</td>
<td>15</td>
<td>7</td>
<td>11.4</td>
<td>N/R</td>
<td>Kulke et al. (44)</td>
<td>2006</td>
<td>Phase II</td>
</tr>
<tr>
<td>everolimus</td>
<td>pancreas</td>
<td>86</td>
<td>9.3</td>
<td>Not reached</td>
<td>11.4</td>
<td>Raymond et al. (45)</td>
<td>2011</td>
<td>Phase III</td>
</tr>
<tr>
<td>everolimus + octetide LAR (RADIANT-2)</td>
<td>gastrointestine</td>
<td>207</td>
<td>5</td>
<td>Not reached</td>
<td>11</td>
<td>Yao et al. (46)</td>
<td>2011</td>
<td>Phase III</td>
</tr>
<tr>
<td>everolimus + octetide LAR (ITMO group study)</td>
<td>pancreas, gastrointestine, lung</td>
<td>50</td>
<td>18</td>
<td>Not reached</td>
<td>Not reached</td>
<td>Bajetta et al. (47)</td>
<td>2014</td>
<td>Phase II</td>
</tr>
<tr>
<td>temsirolimus + bevacizumab</td>
<td>pancreas</td>
<td>56</td>
<td>41</td>
<td>34</td>
<td>13.2</td>
<td>Hobday et al. (48)</td>
<td>2014</td>
<td>Phase II</td>
</tr>
<tr>
<td>bevacizumab + depot octreotide + Peg-IFN alpha-2b</td>
<td>pancreas</td>
<td>44</td>
<td>18</td>
<td>N/R</td>
<td>16.5</td>
<td>Yao et al. (49)</td>
<td>2008</td>
<td>Phase II</td>
</tr>
<tr>
<td>bevacizumab + cap cetabine (BE TTER trial)</td>
<td>gastrointestine</td>
<td>49</td>
<td>18</td>
<td>Not reached</td>
<td>23.4</td>
<td>Mitry et al. (50)</td>
<td>2014</td>
<td>Phase II</td>
</tr>
<tr>
<td>bevacizumab + 5-FU/ streptozocin (BETTER trial)</td>
<td>pancreas</td>
<td>34</td>
<td>44</td>
<td>Not reached</td>
<td>23.7</td>
<td>Ducrèux et al. (51)</td>
<td>2014</td>
<td>Phase II</td>
</tr>
<tr>
<td>bevacizumab + everolimus</td>
<td>pancreas, gastrointestine</td>
<td>39</td>
<td>26</td>
<td>N/R</td>
<td>14.6</td>
<td>Yao et al. (52)</td>
<td>2015</td>
<td>Phase II</td>
</tr>
<tr>
<td>bevacizumab + octetide + metronomic cap cetabine</td>
<td>pancreas, gastrointestine</td>
<td>45</td>
<td>17.8</td>
<td>N/R</td>
<td>14.9</td>
<td>Berruti et al. (53)</td>
<td>2014</td>
<td>Phase II</td>
</tr>
<tr>
<td>Methoxyestradiol + bevacizumab</td>
<td>pancreas, gastrointestine</td>
<td>31</td>
<td>0</td>
<td>N/R</td>
<td>11.3</td>
<td>Kulke et al. (54)</td>
<td>2011</td>
<td>Phase II</td>
</tr>
<tr>
<td>sorafenib + bevacizumab</td>
<td>pancreas, gastrointestine</td>
<td>44</td>
<td>9.4</td>
<td>Not reached</td>
<td>12.4</td>
<td>Castellano et al. (55)</td>
<td>2013</td>
<td>Phase II</td>
</tr>
<tr>
<td>bevacizumab + pertuzumab + sandostatin</td>
<td>pancreas, gastrointestine</td>
<td>43</td>
<td>16</td>
<td>Not reached</td>
<td>8.2</td>
<td>Firdaus et al. (56)</td>
<td>2012</td>
<td>Phase II</td>
</tr>
<tr>
<td>bevacizumab + octetide + metronomic temozolomide</td>
<td>pancreas, gastrointestine G2</td>
<td>15</td>
<td>64</td>
<td>N/R</td>
<td>9</td>
<td>Koumarianos et al. (57)</td>
<td>2012</td>
<td>Phase II</td>
</tr>
<tr>
<td>octetide LAR (PROMID trial)</td>
<td>small intestine (midgut)</td>
<td>42</td>
<td>2.3</td>
<td>N/R</td>
<td>14.3</td>
<td>Rinke et al. (23)</td>
<td>2009</td>
<td>Phase III</td>
</tr>
<tr>
<td>5-fluorouracil + octetide LAR</td>
<td>pancreas, colon, small intestine, unknown</td>
<td>29</td>
<td>24</td>
<td>Not reached</td>
<td>22.6</td>
<td>Britzi et al. (58)</td>
<td>2009</td>
<td>Phase II</td>
</tr>
<tr>
<td>pazopanib</td>
<td>pancreas, gastrointestine</td>
<td>37</td>
<td>18.9</td>
<td>Not reached</td>
<td>9.1</td>
<td>Ahn et al. (59)</td>
<td>2013</td>
<td>Phase II</td>
</tr>
<tr>
<td>thalidomide</td>
<td>pancreas, gastrointestine</td>
<td>18</td>
<td>0</td>
<td>N/R</td>
<td>N/R</td>
<td>Varker et al. (60)</td>
<td>2008</td>
<td>Phase II</td>
</tr>
</tbody>
</table>
CONFLICT OF INTEREST

None of the authors have any conflict of interest to declare.

REFERENCES

K. Kishi, et al.
Unusual gastric neuroendocrine tumor

