Corona structure from arc mafic-ultramafic cumulates:
The role and chemical characteristics of
late-magmatic hydrous liquids

Hassan M. HELMY*, Masako YOSHIKAWA*, Tomoyuki SHIBATA*, Shoji ARAI**
and Akihiro TAMURA**

*Institute for Geothermal Sciences, Kyoto University, Beppu 874-0903, Japan
**Department of Earth Sciences, Kanazawa University, Kanazawa 920-1192, Japan

The Genina Gharbia mafic-ultramafic complex consisting of peridotite, pyroxenite, and gabbro-norite represents a remnant of a hydrous magma chamber that was crystallized at the mantle-crust boundary. The hydrous nature of the magma is expressed in the high modal (up to 60%) of amphibole in cumulates and is reflected in variable textural and chemical features of the complex. One of the important manifestations of the hydrous nature is the development of a corona structure between olivine and plagioclase. The corona texture and mineralogy varied according to the activity of the interstitial liquid, temperature, and P_{H_2O}. The corona in peridotite is limited to thin (<100 microns) orthopyroxene and/or amphibole shells. Thick orthopyroxene (orthopyroxene-spinel symplectites)-clinopyroxene-amphibole coronas are common in norite. Extensive analysis of different minerals of various textures by electron microprobe and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) revealed distinct chemical difference between the interstitial and cumulus phases of the corona. The corona pyroxenes and amphibole are depleted in V, Ti, Zr, and Nb and enriched in LREE, reflecting the LILE-rich and HFSE-depleted nature of the evolved hydrous liquid. The textural and chemical features of the corona are consistent with the formation of corona minerals at the late-magmatic stage. The orthopyroxene corona in peridotite crystallized directly from the evolved melt, while the amphibole corona developed at the expense of plagioclase. Variable corona minerals in norite are the result of direct crystallization from progressively evolved magma during cooling and continuous increase in P_{H_2O}.

Keywords: Corona structure, Mineral chemistry, Hydrous liquids, Late-magmatic, Mafic-ultramafic, Egypt

INTRODUCTION

The physical properties and phase relations of a basaltic liquid are considerably modified by the presence of a significant amount of H_2O in it (Andersen, 1980). Early fluid saturation commonly creates exsolved fluids that texturally and chemically modify the immediate cumulates and the fractionation path of the overlying liquids (Meurer and Boudreau, 1998). In addition to the fact that the exsolved hydrous liquids enhance the solid-state reactions between cumulate minerals, they react with the cumulus phases and form new mineral phases. A corona structure is one of the most recognized textures in liquid-bearing cumulates. The coronas of variable minerals were observed between olivine and plagioclase in many gabbroic cumulates worldwide (e.g., Whitney and McLelland, 1983, Gardner and Robins, 1974). Corona mineral assemblages vary from one locality to another and within the same complex. The development of corona minerals was attributed to fluid assisted metamorphic (Lamoen, 1979) or magmatic (Joesten, 1986) processes. The physicochemical conditions and compositions of reactants control the mineral diversity in coronas; amphibole is more stable than clinopyroxene at high P_{H_2O}, while orthopyroxene is stable at high temperatures.

Arc mafic magmas are commonly hydrous and undergo fractional crystallization and accumulation at different crustal depths. The increasing water content of such magmas helps to produce a thick sequence of differentiated cumulates with anorthitic plagioclase and interstitial amphibole. The amount of interstitial hydrous liquid increases during crystallization and causes very imperfect
fractional crystallization processes (Claeson and Meurer, 2004).

In this contribution, we describe the corona mineral assemblage (including enstatite, diopside, and amphibole) from a Genina Gharbia (GG) mafic-ultramafic complex from the Eastern Desert of Egypt that was crystallized at the mantle-crust boundary at the base of a Precambrian island arc (Helmy et al., 2007). The coronas were observed at the olivine-plagioclase and spinel-plagioclase contacts in all plagioclase-bearing rocks. The major (microprobe) and trace-element (laser ablation inductively coupled plasma mass spectrometry, LA-ICP-MS) compositions of the cumulus, intercumulus, and corona minerals are presented. We show that the intercumulus amphibole and corona minerals were crystallized from the evolving hydrous liquid and also that the interstitial hydrous liquids assisted the mineral–mineral reactions during cooling. The corona mineral chemistry reflects both the chemical evolution of hydrous liquids and the chemistry of cumulus phases.

GEOLOGICAL BACKGROUND AND PETROGRAPHY

A complex of igneous and metamorphic rocks of Precambrian age covers about 88000 km² of the Eastern Desert (part of the Arabian–Nubian Shield) of Egypt. This complex comprises widespread exposures of ophiolites, mafic to intermediate metavolcanic rocks, granitoids, immature sedimentary rocks, and abundant intrusive mafic–ultramafic rocks. The intrusive mafic-ultramafic complexes form small elliptical bodies (3.5–11 km long and 0.5–2.5 km wide) and are located along major NE–SW–trending fracture zones. Immediate host rocks of the mafic-ultramafic complexes are calc-alkaline volcanic and granitoid rocks. Recent isotopic studies of one of these complexes revealed a Sm/Nd age of 770 Ma (Helmy et al., 2005). The evidence for island arc setting of these complexes comes from the general geologic context, field relations, mineralogy, and mineral and bulk-rock chemistry (Helmy and El Mahallawi, 2003; Farahat and Helmy, 2006).

The GG mafic-ultramafic intrusion is located about 175 km southeast of Aswan (Fig. 1). It covers an area that is 9.0-km long and 3.5-km wide and comprises peridotites, pyroxenites, and gabbronorite. This association intruded Precambrian granitoids and island arc volcaniclastic rocks. The latter rocks are frequently garnetiferous within 50 m of the intrusion (Fredriksson, 1974). The GG intrusion is nonmetamorphosed; a complete sequence of cumulates is found.

Peridotites are made of olivine (60%–70%), orthopyroxene (30%–40%), amphibole (15%–30%), plagioclase (5%–25%), and clinopyroxene (1%–10%). Pyroxenites are made of orthopyroxene (>70 modal%) and intercumulus amphibole (Fig. 2A) and contain traces (<2% modal) of plagioclase. Abundant biotite and apatite are the characteristics of pyroxenites. Gabbronorite is classified into norite and two pyroxene gabbro. Norite is coarse-grained and made up of olivine (5%–8% modal), orthopyroxene (10%–15%), clinopyroxene (5%–15%), amphibole (10%–15%) and plagioclase (45%–60%). Orthopyroxene, clinopyroxene and amphibole form large oikocrysts that enclose plagioclase crystals (Fig. 2B). Biotite and apatite are common accessory minerals in pyroxenites and norite.

Helmy (2004) reported high Cl contents in apatite. Two-pyroxene gabbro is made of orthopyroxene (40%–50%), clinopyroxene (20%–30%), plagioclase (20%–30%), and minor amphibole. The various rocks are fresh although some samples show weak alteration manifested by the serpentinitization of olivine. Pressure estimates (10 kbar) and other petrological features (high NiO and Al₂O₃ contents in olivine and orthopyroxene, respectively) of GG mafic-ultramafic rocks correspond to a crystallization depth of 30 km at the mantle-crust boundary (Helmy et al., 2007). Similar estimates of the mantle-crust boundary beneath the Eastern Desert of Egypt were made on the basis of other petrological (e.g., Bonatti and Styler, 1987) and geophysical (Pasyanos and Walter, 2002) data.

Interstitial amphibole is observed in all lithologies. In the peridotites, amphibole content is up to 30 modal% where it forms the groundmass that hosts olivine and pyroxenes. The amphibole is not evenly distributed in single thin sections, being more abundant in olivine-rich parts. In pyroxenites, amphibole is less abundant (up to 20%...
Figure 2. Plane-polarized light photomicrographs of entire thin sections (60-μm thick) of pyroxenite (A) and norite (B).

Figure 3. Orthopyroxene (Opx) and hornblende (Hbl) corona between olivine (Ol) and plagioclase (Plg). Note the smooth contact between orthopyroxene and olivine and the irregular contacts between hornblende and Plagioclase (Plg), also the continuity of corona and cumulus orthopyroxene in (B). Samples GG23 and 28 [(A), (B), respectively].

Figure 4. Corona textures in GG norite (sample GG16). (A) Orthopyroxene-spinel symplectites (opx-Spl) replacing olivine and surrounded by thick orthopyroxene corona. (B) Thin orthopyroxene-spinel symplectites rimmed by thin clear orthopyroxene and hornblende (green). (C) Orthopyroxene and hornblende (Hbl) shells grow on the same olivine (Ol) crystal. (D) Thick clinopyroxene (cpx) corona enclose anhedral inclusions (adccumulate) of plagioclase (Plg) and overgrown by hornblende.
Corona structure in peridotites

The simple form of coronas between olivine and plagioclase in peridotites consists of an inner shell of enstatite-rich orthopyroxene and an outer shell of amphibole (Fig. 3). Single-shell coronas are also found surrounding olivine and consist of either orthopyroxene or amphibole. Amphibole shells commonly develop on small olivine grains totally included in plagioclase and at the contact between orthopyroxene and plagioclase. In detail, the orthopyroxene inner shell is made of columnar crystals that are radially arranged around olivine; the thickness of this shell never exceeds 50 μm. The thickness of the shell around a single olivine crystal is almost uniform. A continuous contact between corona and cumulus orthopyroxene is noted (Fig. 3B). In few cases, relatively thick (about 100 μm) orthopyroxene corona was observed with irregular contacts with plagioclase. When present, the amphibole shell is of a variable width ranging from 50 to 100 μm; sometimes, it contains small isolated grains of orthopyroxene (Fig. 3B) and exhibits irregular extensions inside plagioclase. When an amphibole shell grows directly on olivine, no inclusions of orthopyroxene are observed.

Corona structure in norites

Corona structures in norite are more extensive where the orthopyroxene, clinopyroxene, and amphibole shells are of considerably variable and larger thicknesses (up to 2 mm, Fig. 4A). Orthopyroxene–spinel (Fe–Al spinel) symplectite shells grow directly on olivine; they start as very fine-grained textures (Figs. 4A and 4B) and develop into medium-grained textures. An orthopyroxene–spinel shell is usually surrounded by pure orthopyroxene zone, while the outermost part against plagioclase consists of amphibole. The contact between orthopyroxene–spinel symplectites and olivine is commonly corroded (Fig. 4A). In addition to the orthopyroxene–spinel symplectites, both orthopyroxene and amphibole shells commonly contain small anhedral grains of spinel. Orthopyroxene coronas in norite are of variable widths ranging from 50 μm to 2 mm. Orthopyroxene and amphibole coronas may grow directly on the same olivine grain (Fig. 4C). The corona orthopyroxene, clinopyroxene, and amphibole commonly grow to form large oikocrysts. Textures suggest that the oikocrysts have grown after an initial accumulation of the cumulus (chadacrysts) of olivine. Pyroxene oikocrysts are common in the cumulates formed in gabbro–troctolite rocks (e.g., Mathison, 1987) and are commonly attributed to the reaction of the intercumulus liquid with cumulus phases (Irvine, 1980) to form “adcumulates.”

MINERAL CHEMISTRY

Analytical techniques

The chemical compositions of olivine, orthopyroxene, clinopyroxene, amphibole, and plagioclase from different textures have been obtained. The major-element analysis of minerals was carried out with a JEOL JXA-8800 electron probe microanalyser (EPMA) at Department of Earth Sciences, Kanazawa University. The analyses were performed under an acceleration voltage of 20 kV, a specimen current of 20 nA, and a beam diameter of 3 μm. Data were corrected using a ZAF program. The concentrations

Corona structure in peridotites

The simple form of coronas between olivine and plagioclase in peridotites consists of an inner shell of enstatite-rich orthopyroxene and an outer shell of amphibole (Fig. 3). Single-shell coronas are also found surrounding olivine and consist of either orthopyroxene or amphibole. Amphibole shells commonly develop on small olivine grains totally included in plagioclase and at the contact between orthopyroxene and plagioclase. In detail, the orthopyroxene inner shell is made of columnar crystals that are radially arranged around olivine; the thickness of this shell never exceeds 50 μm. The thickness of the shell around a single olivine crystal is almost uniform. A continuous contact between corona and cumulus orthopyroxene is noted (Fig. 3B). In few cases, relatively thick (about 100 μm) orthopyroxene corona was observed with irregular contacts with plagioclase. When present, the amphibole shell is of a variable width ranging from 50 to 100 μm; sometimes, it contains small isolated grains of orthopyroxene (Fig. 3B) and exhibits irregular extensions inside plagioclase. When an amphibole shell grows directly on olivine, no inclusions of orthopyroxene are observed.

Corona structure in norites

Corona structures in norite are more extensive where the orthopyroxene, clinopyroxene, and amphibole shells are of considerably variable and larger thicknesses (up to 2 mm, Fig. 4A). Orthopyroxene–spinel (Fe–Al spinel) symplectite shells grow directly on olivine; they start as very fine-grained textures (Figs. 4A and 4B) and develop into medium-grained textures. An orthopyroxene–spinel shell is usually surrounded by pure orthopyroxene zone, while the outermost part against plagioclase consists of amphibole. The contact between orthopyroxene–spinel symplectites and olivine is commonly corroded (Fig. 4A). In addition to the orthopyroxene–spinel symplectites, both orthopyroxene and amphibole shells commonly contain small anhedral grains of spinel. Orthopyroxene coronas in norite are of variable widths ranging from 50 μm to 2 mm. Orthopyroxene and amphibole coronas may grow directly on the same olivine grain (Fig. 4C). The corona orthopyroxene, clinopyroxene, and amphibole commonly grow to form large oikocrysts. Textures suggest that the oikocrysts have grown after an initial accumulation of the cumulus (chadacrysts) of olivine. Pyroxene oikocrysts are common in the cumulates formed in gabbro–troctolite rocks (e.g., Mathison, 1987) and are commonly attributed to the reaction of the intercumulus liquid with cumulus phases (Irvine, 1980) to form “adcumulates.”

MINERAL CHEMISTRY

Analytical techniques

The chemical compositions of olivine, orthopyroxene, clinopyroxene, amphibole, and plagioclase from different textures have been obtained. The major-element analysis of minerals was carried out with a JEOL JXA-8800 electron probe microanalyser (EPMA) at Department of Earth Sciences, Kanazawa University. The analyses were performed under an acceleration voltage of 20 kV, a specimen current of 20 nA, and a beam diameter of 3 μm. Data were corrected using a ZAF program. The concentrations
of the trace and rare-earth elements contained in amphibole, clinopyroxene, orthopyroxene, olivine, and plagioclase from different rock units were determined by a laser ablation (193-nm ArF excimer: MicroLas GeoLas Q- plus)–inductively coupled plasma mass spectrometry (Agilent 7500S) (LA-ICP-MS) at the Incubation Business Laboratory Center of Kanazawa University (Ishida et al., 2004). For analytical details and quality of data please see Morishita et al. (2004).

Major oxides

The most magnesian olivine (Mg# = 100Mg/(Mg + Fe)) = 86) is found in peridotite, while the olivine in the gabbro is less magnesian (Mg# = 78). A characteristic feature of the oxides is a positive correlation between the Mg# of olivine and those of the coexisting orthopyroxene, clinopyroxene, and amphibole (Fig. 5).

The cumulus and corona orthopyroxenes from GG are enstatite. Cumulus orthopyroxene is unzoned and of homogenous composition within the same rock. The Cr contents range from <0.1 wt% to 0.9 wt%. The Mg# of diopside oikocryst in norite exhibits a high Mg# (93).

The amphiboles found in peridotite are ferrian tschermakite and pargasite; those in norite and gabbro, magnesiohornblende (Mogessie et al., 2001). Amphibole coronas formed on pyroxenes are edenite. Intercumulus and oikocryst amphiboles exhibit distinct chemical features from corona amphibole. The latter is commonly depleted in CaO, Cr2O3, and TiO2. There is a systematic positive correlation of amphibole Mg# with Mg# of the coexisting olivine and pyroxenes (Fig. 5). Amphibole has generally high and variable Ti content and low Mg# than the coexisting olivine and pyroxenes (Fig. 5). Cr2O3 contents are constantly high (up to 1.5 wt%) in peridotite and decrease with differentiation (<0.2 wt% in gabbro).

The textural features and calculated K0 value (K0 = 0.68) of the cumulus clinopyroxene and orthopyroxene coexisting in gabbros suggest equilibrium (K0 = [XMgSiO3/(1 – XMgSiO3)][(1 – XMgCaSiO3)XMgCaSiO3], XMgSiO3 = Mg/(Mg + Fe) of orthopyroxene, XMgCaSiO3 = Mg/(Mg + Fe) of clinopyroxene; Kretz, 1963). The equilibrium temperatures using geothermometers based on the diopside–enstatite miscibility gap in coexisting pyroxenes (Wells, 1977) yielded temperatures of 950 ± 30 °C. As the chemical compositions of pyroxenes could have been modified during a subsolidus cooling stage, the calculated temperatures are not entirely reliable. The estimated temperatures from corona orthopyroxene and clinopyroxene in the norite are 920 ± 10 °C. The calculated K0 values of corona ortho- and clinopyroxene (K0 = 0.75) suggest equilibrium; therefore, we consider the estimated temperatures to be reliable.

Trace and rare earth elements

The amounts of trace and rare-earth elements contained in orthopyroxene, amphibole, and clinopyroxene from all lithologies are listed in Table 1. Important elemental ratios and primitive mantle-normalized rare-earth-element (REE) patterns are shown in Figures 6, 7 and 8.

Within the same sample, the amphibole chemistry varies with texture; in all rock lithologies the corona amphibole is generally depleted in trace elements relative to the intercumulus amphibole (Table 1). The V content of amphiboles generally increases with fractionation; the corona amphibole contains much lesser V than that intercumulus amphibole does (Table 1 and Fig. 6). Amphibole shows a wide range of Ti/V and Zr/Nb ratios (Fig. 6), indicating progressive fractionation; further, a wide range within the same rock unit suggests amphibole crystalliza-
Table 1. Chemical compositions of mafic minerals from different textures, Genina Gharbia area

<table>
<thead>
<tr>
<th>Texture</th>
<th>Orthopyroxene</th>
<th>Amphibole</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Gabbro</td>
<td>Gabbro</td>
</tr>
<tr>
<td>Sample no.</td>
<td>GG22</td>
<td>GG16</td>
</tr>
<tr>
<td>C</td>
<td>55.21</td>
<td>55.60</td>
</tr>
<tr>
<td>Cn</td>
<td>0.04</td>
<td>b.d.l</td>
</tr>
<tr>
<td>O</td>
<td>25.34</td>
<td>26.93</td>
</tr>
<tr>
<td>MnO</td>
<td>11.35</td>
<td>11.55</td>
</tr>
<tr>
<td>MgO</td>
<td>0.43</td>
<td>0.32</td>
</tr>
<tr>
<td>FeO</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>K2O</td>
<td>100.06</td>
<td>99.51</td>
</tr>
<tr>
<td>Mg#</td>
<td>0.730</td>
<td>0.77</td>
</tr>
<tr>
<td>Kd**</td>
<td>0.68</td>
<td>0.75</td>
</tr>
</tbody>
</table>

Electron microprobe data in wt%, La-ICP-MS in ppm.

Kd = \[\frac{X_{\text{MgSiO}_3}/(1 - X_{\text{MgSiO}_3})}{(1 - X_{\text{MgCaSi}_2\text{O}_6})/X_{\text{MgCaSi}_2\text{O}_6}}\], \(X_{\text{MgSiO}_3} = \text{Mg}/(\text{Mg} + \text{Fe})\) of orthopyroxene, \(X_{\text{MgCaSi}_2\text{O}_6} = \text{Mg}/(\text{Mg} + \text{Fe})\) of clinopyroxene (Kretz, 1963)

C, cumulus; I, intercumulus; P, poikilitic; O, oikocryst; Cn, corona; b.d.l, below detection limit.

* Electron microprobe data in wt%, La-ICP-MS in ppm.

** \(K_d\) = \[X_{\text{MgSiO}_3}/(1 - X_{\text{MgSiO}_3})\][(1 - X_{\text{MgCaSi}_2\text{O}_6})/X_{\text{MgCaSi}_2\text{O}_6}]\], \(X_{\text{MgSiO}_3} = \text{Mg}/(\text{Mg} + \text{Fe})\) of orthopyroxene, \(X_{\text{MgCaSi}_2\text{O}_6} = \text{Mg}/(\text{Mg} + \text{Fe})\) of clinopyroxene (Kretz, 1963)
Corona structure from arc mafic-ultramafic cumulates

<table>
<thead>
<tr>
<th>Table 1. (Continued)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinopyroxene</td>
</tr>
<tr>
<td>Rock type</td>
</tr>
<tr>
<td>Sample no.</td>
</tr>
<tr>
<td>Texture</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Gabbro</th>
<th>Norite</th>
<th>Norite</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>52.99</td>
<td>53.85</td>
<td>53.64</td>
</tr>
<tr>
<td>TiO₂</td>
<td>0.65</td>
<td>0.35</td>
<td>0.34</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>2.97</td>
<td>2.57</td>
<td>2.41</td>
</tr>
<tr>
<td>Cr₂O₃</td>
<td>0.27</td>
<td>0.86</td>
<td>0.83</td>
</tr>
<tr>
<td>FeO</td>
<td>6.43</td>
<td>4.02</td>
<td>3.93</td>
</tr>
<tr>
<td>MnO</td>
<td>0.17</td>
<td>0.16</td>
<td>0.16</td>
</tr>
<tr>
<td>MgO</td>
<td>14.43</td>
<td>15.99</td>
<td>15.71</td>
</tr>
<tr>
<td>CaO</td>
<td>22.51</td>
<td>23.04</td>
<td>22.88</td>
</tr>
<tr>
<td>Na₂O</td>
<td>0.48</td>
<td>0.37</td>
<td>0.35</td>
</tr>
<tr>
<td>K₂O</td>
<td>0.00</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>Total</td>
<td>100.89</td>
<td>101.22</td>
<td>100.26</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Gabbro</th>
<th>Norite</th>
<th>Norite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mg#</td>
<td>0.80</td>
<td>0.88</td>
<td>0.85</td>
</tr>
<tr>
<td>Kₐ⁺**</td>
<td>1397</td>
<td>95</td>
<td>93</td>
</tr>
</tbody>
</table>

Figure 6. Variation plots of trace-element contents of amphibole. Analyses of coronas are labeled as “Cn.”

Corona orthopyroxene was found in peridotite and norite. Only one relatively thick orthopyroxene corona (developed at the expense of plagioclase) was analyzed by LA-ICP-MS; other coronas in peridotite were too thin to be analyzed. In all types of orthopyroxene (cumulus,
H.M. Helmy, M. Yoshikawa, T. Shibata, S. Arai and A. Tamura

The corona structures between olivine and plagioclase are common in mafic rocks. The development of corona structures is commonly attributed to the chemical disequilibrium between reactants (Claeson, 1998). The reactants are either solids (mineral-mineral reaction) or solids and liquids (solid-liquid reaction). The mineral-mineral reactions are important in metamorphosed rocks and occur through the diffusion of elements, usually catalyzed by the presence of a small amount of late deuteric fluid. Mineral-mineral reactions through diffusion result in thin homogeneous coronas. Solid-liquid reactions are more important during cooling of hydrous magmas and produce thick and more diverse mineral assemblages in the coronas. In all cases, the role of hydrous liquids either as catalysts or reactants is significant.

The GG mafic-ultramafic rocks are considered to be the remnants of a magma chamber that were crystallized oikocrysts, and corona), the V contents correlate positively with the Ti contents. The corona orthopyroxene from norite contains the lowest V and Ti contents (Fig. 8B). Similar correlation between Sc and Ti contents is also revealed by orthopyroxene. The corona orthopyroxene in peridotite has the same HREE content as that of the cumulus variety, but it is highly enriched in LREE and exhibits a strong positive Eu anomaly (Table 1 and Fig. 7C). Textural evidence suggests that this LREE-enriched orthopyroxene developed at the expense of plagioclase. The corona orthopyroxene in norite has a lower REE content than that which the cumulus orthopyroxene from the same sample has. The REE content of oikocrystic orthopyroxene is higher than that of corona but lower than that of cumulus orthopyroxene (Fig. 7C).

DISCUSSION

Figure 7. Mantle-normalized REE plots of amphibole and plagioclase (A), clinopyroxene (B), and orthopyroxene (C) from Gennana Gharbia. Corona 1 in (A) is thin amphibole replacing plagioclase, while Corona 2 is thick (see text for explanation).

Figure 8. Variation plots of trace-element contents in clinopyroxene (A) and orthopyroxene (B). Analyses of coronas are labeled as “Cn.”
at the deep levels of an island arc (Helmy et al., 2007). Arc magmas are usually hydrous; water contents up to 5% are to be expected in some arc basalts (Grove et al., 2002). The hydrous nature of the GG parent magma is expressed in the dominance of amphibole, biotite, and other accessory minerals in the rock assemblage. The early crystallized olivine in the crystal mush (of peridotite) allowed the early crystallization of amphibole from the interstitial liquid (Holz, 1982). The modal abundance of interstitial amphibole indicates a bulk H$_2$O content of >1.5% (Beard et al., 2004). Excess liquids (rich in water) will remain even after the crystallization of amphibole from the interstitial hydrous liquid. Trapped hydrous liquid is believed to play a major role in the development of corona structures in cumulate rocks (Irvine, 1980) and has very substantial effects, particularly on the relative concentrations of highly compatible elements (O’Hara, 1993).

Corona microstructures are characteristic of amphibolite–granulite facies terrains (e.g., Whitney and McLelland, 1983; Grant 1988), however, these coronas were also described from nonmetamorphosed gabbros (e.g., Joesten, 1986). In metamorphic terrains, the coronitic metababbros are strongly foliated and amphibilitized, and garnet and/or olivine are important constituents of coronas (e.g., Lamoen, 1979; Whitney and McLelland, 1983). The corona development in metagabbros is attributed to solid-state or fluid-assisted metamorphic processes. Although we cannot completely exclude a metamorphic origin of the coronas, we recommend corona development during magmatic cooling, under the influence of changing compositions of interstitial hydrous liquids due to the following reasons:

1) The absence of high-grade metamorphic rocks in this region of the Eastern Desert (amphibolite facies metamorphic rocks are only exposed in gneissic domes, namely, the Meatiq–Sibai and Hafafit Domes, Fritz et al., 1996). The basement rocks of the GG area are either non- or weakly-(greenschist facies) metamorphosed.

2) The contact thermal metamorphism developed in the volcanosedimentary rocks in contact with the GG intrusion (Fredriksson, 1974) indicates that the intrusion was emplaced at this place and did not suffer from high-grade metamorphism.

3) No foliation or amphibilitization is noted in the GG mafic–ultramafic rocks.

4) The estimated temperatures in order of 920 °C for a coronitic assemblage suggest cooling-related phenomena (e.g., Dam, 1995).

5) The coexistence of both coronitic microstructures and stable plagioclase-olivine contacts on a thin-section scale. This feature suggests that corona microstructures are limited to parts where hydrous magmatic liquids were available (e.g., de Hass et al., 2002).

The diversity of mineral assemblages and textures within a corona will depend largely on the chemistry of reactants, pressure, temperature, and P$_{H_2O}$. The relative importance of each of these factors will be reflected in the textures, mineralogy, and chemistry of phases in the coronas. At the GG area, the components of each corona differ from one rock to another and from one corona to another within the same rock. Despite differences in texture, the sequence of mineral growth within coronas in peridotite is orthopyroxene–amphibole. In norite, the sequence is orthopyroxene–orthopyroxene–spinel–clinopyroxene–amphibole. Variations in the melt composition can explain the layer sequence olivine–orthopyroxene, orthopyroxene–amphibole, orthopyroxene–clinopyroxene, and clinopyroxene–amphibole. We will discuss the mineral growth within the corona according to their appearance; this will reflect the chemical evolution and pressure, temperature, and P$_{H_2O}$ conditions.

Orthopyroxene and orthopyroxene-spinel symplectites

Orthopyroxene is the first mineral to form in the GG coronas. The olivine–orthopyroxene contacts in peridotite are sharp with no signs of replacement, while those in norite are convex. It is likely that the orthopyroxene corona in peridotite crystallized directly from the magma. The absence of any contacts between corona and cumulus orthopyroxene (e.g., Fig. 3B) supports this suggestion. However, the irregular contacts between some orthopyroxene coronas and plagioclase in peridotite suggest that some orthopyroxene coronas develop at the expense of plagioclase (reaction 1). This may explain the relatively high LREE content of corona orthopyroxene (Fig. 7C). On the other hand, the convex contact between orthopyroxene-spinel symplectites and olivine in norite suggests that they grew at the expense of olivine by partial dissolution. Moreover, spinel could also be produced through the olivine-plagioclase reaction, as shown in reaction 1 below. The corona orthopyroxene in norite is depleted in trace elements and REE relative to the oikocrysts and cumulus orthopyroxene from the same rock (Table 1). However, the trace and REE contents of the corona orthopyroxene are still higher than those of olivine (generally, below the detection limit) from the same rock. Therefore, we suggest a contribution from the interstitial hydrous liquid to account for the relatively higher trace elements and REE content. The parallel REE patterns of corona and orthopyroxene oikocrysts suggest that the latter was formed from
the evolved hydrous liquid.

Clinopyroxene

Although clinopyroxene coronas are not observed in peridotite, we infer that corona clinopyroxene predated amphibole formation, as it was never observed growing on corona amphibole. Positive correlations between V and Ti (Fig. 8A, and Table 1) suggest that clinopyroxene crystallized from the in-situ evolving interstitial liquid (e.g., Claeson et al., 2007). The similar REE patterns of poikilitic, oikocryst and corona clinopyroxene support this inference. An alternative mechanism to produce clinopyroxene is through the olivine-plagioclase reaction (reaction 1).

\[
3\text{CaAl}_2\text{Si}_2\text{O}_8 + 6(\text{Mg,Fe})_2\text{SiO}_4 \rightarrow \\
\text{plagioclase} + \text{olivine} \\
6(\text{Mg,Fe})_2\text{SiO}_4 + 3\text{Ca(Fe,Fe)}_2\text{Si}_2\text{O}_8 + 3(\text{Fe,Mg})_2\text{Al}_2\text{O}_4 \\
\text{orthopyroxene} + \text{clinopyroxene} + \text{spinel}
\] (1)

Amphibole

Amphibole coronas were observed in all plagioclase-bearing rocks. In peridotite, the amphibole coronas develop on olivine and orthopyroxene with sharp and smooth contacts with both, but irregular contacts with plagioclase (e.g., Fig. 3). The amphibole coronas grown on olivine are relatively thicker than those developing on orthopyroxene. Textural features suggest that amphibole grew at the expense of plagioclase (reaction 2). The trace-element contents of corona amphibole from peridotite are similar to those of intercumulus amphibole (Table 1). However, the REE are different; La and Ce contents are slightly higher in corona amphibole while HREE are lower than interstitial amphibole (Fig. 7A). The high LREE and low HREE of plagioclase (Fig. 7A) in the same sample can account for the difference between corona and interstitial amphibole. The strong positive Eu anomaly of corona amphibole points toward the evolved hydrous liquid contribution. Therefore, the formation of amphibole at the expense of plagioclase with a contribution from interstitial hydrous liquid is chemically supported.

In norite, the amphibole coronas are much thicker; amphibole oikocrysts develop around olivine. Due to the large thickness, and the trace elements and REE characteristics of amphibole oikocrysts on olivine, we suggest that the amphibole oikocrysts, formed directly from the interstitial hydrous liquid under high \(P_{H_2O} \). The positive correlations between V/Ti and Nb/Zr (Fig. 6) in amphibole are consistent with the amphibole crystallization from evolving interstitial hydrous liquid (e.g., Claeson et al., 2007). Thin amphibole shells between plagioclase and other mafics have lower REE contents relative to amphibole oikocrysts. The thin amphibole shells likely formed at the expense of plagioclase (reaction 2) with high input from the interstitial hydrous liquid. This hydrous liquid is likely to be oxidized and will increase the \(\text{Eu}^{3+}/\text{Eu}^{2+} \) ratio. \(\text{Eu}^{3+} \) is highly accommodated in amphibole. This explains the strong Eu anomaly and higher concentration of REE compared with plagioclase in corona amphibole and the different REE patterns of corona amphibole and corona clinopyroxene from the same rock, the latter most having crystallized earlier from the evolved melt.

\[
\text{CaAl}_2\text{Si}_2\text{O}_8 + \text{NaAlSi}_3\text{O}_8 + 3(\text{Mg,Fe})_2\text{SiO}_3 + \\
\text{plagioclase} + \text{orthopyroxene} \\
3\text{Ca}(\text{Mg,Fe})_2\text{Si}_2\text{O}_8 + 3(\text{MgO,FeO}) + 2\text{H}_2\text{O} + \\
\text{clinopyroxene} \\
\rightarrow \text{NaCa}_3(\text{Mg,Fe})_2\text{Al}_2\text{Si}_2\text{O}_{12}(\text{OH})_2 + \\
\text{amphibole} \\
\text{Ca}_2(\text{Mg,Fe})_2\text{Si}_2\text{O}_{12}(\text{OH})_2
\] (2)

In addition to \(\text{H}_2\text{O} \), the late-magmatic liquid contributed to the inputs and outputs of the above reactions and was probably responsible for the trace elements and REE contents of the corona phases, as discussed above.

Pressure, temperature and \(P_{H_2O} \) evolution during corona formation

According to the above discussion, we believe that the coronas started to grow early at the magmatic stage and continued during cooling, aided by the progressive concentration of hydrous liquid. The sequence of mineral growth in coronas and chemical features indicate a gradual decrease in temperature and increase in \(P_{H_2O} \) and oxygen fugacity. The first corona mineral to form is orthopyroxene at high temperature, followed by clinopyroxene and amphibole, the last corona mineral to form. The formation of clinopyroxene instead of amphibole in some parts of thin section indicates variable \(P_{H_2O} \) in a small scale. The development of amphibole as the last stage of corona formation in all rocks and corona types reflects the increase \(P_{H_2O} \) at the last stages of corona formation. The evolved hydrous liquids were depleted in HFSE but enriched in LILE as indicated by the corona mineral chemistry. Haas et al (2002) raised the question whether the corona shells developed simultaneously (single stage model) or their growth was separated in time. As the hydrous melt fractionation and cooling will lead to a progressive increase in \(\text{H}_2\text{O} \) concentration, we believe that the process
of corona formation at GG was a continuous process at least in norite.

CONCLUSIONS

The petrographic and mineralogical studies of the arc cumulate from GG, which was crystallized from a hydrous magma, reveals that interstitial hydrous liquid played a major role in the development of the corona structure. The high water content of the magma (~ 1.5 wt%) helped to stabilize amphibole early during cooling of the crystal mush at the floor of the intrusion. Further fractionation increased the H$_2$O content in the liquid and caused extensive textural and mineralogical changes. Corona orthopyroxene started to form at high temperatures directly from anhydrous magma, reveals that interstitial hydrous liquid played a role in the formation of corona at GG was a continuous process at least in norite.

AKNOWLEDGMENTS

We would like to thank Prof. K. Takemura, Institute for Geothermal Sciences, Kyoto University, for his support during HM Helmy’s stay in Beppu. This study was partly supported by Kyoto University for the 21st Century Centers of Excellence Program, which was approved by the Ministry of Education, Culture, Sports, Science, and Technology (MEXT) of Japan and by Grant-in-Aid for Creative Research (19GS0211). We are grateful to T.L. Larikova and anonymous referee for the constructive reviews and to Prof. T. Hirajima for his editorial handling.

REFERENCES

Lamoen, H. van (1979) Coronas in olivine gabbros and iron ores from Susimaki and Riuttamaa, Finland. Contributions to Mineralogy and Petrology, 68, 259-268.

Manuscript received September 6, 2007
Manuscript accepted June 16, 2008

Manuscript handled by Takao Hirajima