Journal of Mineralogical and Petrological Sciences
Online ISSN : 1349-3825
Print ISSN : 1345-6296
ISSN-L : 1345-6296
LETTERS
Preliminary report on the excess argon bearing K–feldspar from metagranite in the Brossasco–Isasca UHP Unit of Dora–Maira Massif, Italy
Tetsumaru ITAYA Koshi YAGIChitaro GOUZUNGO XUAN THANHChiara GROPPO
Author information
JOURNAL FREE ACCESS
Supplementary material

2017 Volume 112 Issue 1 Pages 36-39

Details
Abstract

The metagranite, that still preserves the igneous structure, is composed mainly of K–feldspar, plagioclase, quartz, biotite, white mica and accessory ilmenite. Quartz, K–feldspar, plagioclase and biotite preserve the original igneous shape, but are either re–equilibrated or replaced by new phases. Quartz occurs as fine–grained granoblastic aggregate, statically derived from inversion of coesite. Plagioclase is now composed of a fine–grained mineral aggregate including albite, zoisite, phengite, titanite and apatite. Biotite is surrounded and partly replaced by fine–grained white mica.

 K–Ar analyses of K–feldspar from the metagranite were carried out, giving 42.6 ± 0.9 Ma. This age, significantly older than the SHRIMP zircon U–Pb age (35.4 ± 1.0 Ma) previously estimated for the metamorphic peak of the Brossasco–Isasca UHP unit, is apparent due to inherited excess argon (∼ 3.4%) from the host lithologies. This inherited excess argon is interpreted as related to the fact that K–feldspar has trapped the excess argon wave generated by the argon release from micas (that have large amount of radiogenic argon) during exhumation and cooling of the host lithologies.

Content from these authors
© 2017 Japan Association of Mineralogical Sciences
Previous article Next article
feedback
Top