
Adv
an

ce
 P

ub
lic

at
io

n 
Arti

cl
eRevisiting Pb isotope signatures of Ni–Fe alloy hosted

by antigorite serpentinite from the Josephine Ophiolite, USA

Mayu KAKEFUDA*, Tatsuki TSUJIMORI*,**,***, Katsuyuki YAMASHITA†,

Yoshiyuki IIZUKA**,‡ and Kennet E. FLORES**,***,§

*Department of Earth Science, Tohoku University, Sendai 980–8578, Japan
**Center for Northeast Asian Studies, Tohoku University, Sendai 980–8576, Japan

***Department of Earth and Planetary Sciences, American Museum of Natural History, New York, NY 10024–5192, USA
†Graduate School of Natural Science and Technology, Okayama University, Okayama 700–8530, Japan

‡Institute of Earth Sciences, Academia Sinica, Taipei 11529, Taiwan
§Department of Earth and Environmental Sciences, Brooklyn College of the City University of New York,

Brooklyn, NY 11210, USA

Awaruite (Ni2–3Fe) is a natural occurring Ni–Fe alloy in serpentinite, which represents a better candidate to
assess Pb isotope signatures in the mantle wedge since the concentration of Pb in awaruite is almost ten times
higher than that in serpentine minerals. Revisiting so–called josephinite from the Josephine Ophiolite confirmed
that josephinite is characterized by aggregates of awaruite with minor Ni–arsenide. The Raman spectrum ob-
tained from the josephinite–hosting serpentinite shows diagnostic peaks of antigorite, suggesting josephinite
might have formed under stability field of antigorite. Using a stepwise leaching and partial dissolution method,
we obtained Pb isotope ratios of josephinite by TIMS. Since all ratios converged to a homogeneous value
towards the later steps of the partial dissolution, this allowed to calculate weighted mean values that give
precise Pb isotope ratios: 206Pb/204Pb = 18.3283 ± 0.0020 (MSWD = 0.49), 207Pb/204Pb = 15.5645 ± 0.0020
(MSWD = 0.36), and 208Pb/204Pb = 38.0723 ± 0.0061 (MSWD = 0.50); these values can be evaluated as one of
the reference Pb isotope ratios in serpentinites from supra–subduction zone ophiolite. The newly obtained Pb
isotope ratios of josephinite are consistent with the previous reported isotope ratios, which are characterized by
enriched 207Pb/204Pb ratio with MORB–source like 206Pb/204Pb and 208Pb/204Pb ratios. Although these Pb iso-
tope features interpreted as a reflection of arc magmatism in the previous study, the presence of Ni–arsenide and
enriched 207Pb/204Pb ratios may indicate an involvement of As–rich fluids derived from slab sediments.
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INTRODUCTION

During last two decades, serpentinite and serpentinization
of mantle peridotite have received much attention for their
important roles in mineralogical, geochemical, and seis-
mological processes (e.g., Evans et al., 2013; Oyanagi et
al., 2015; Plümper et al., 2017; Yamada et al., 2019a). One
of those notable roles played by serpentinites is their con-
tribution on discussing the fluid–mediated material trans-
fer at convergent plate boundaries. In tectonic context,
serpentinite can be a major storage of fluid–mobile ele-

ments such as B, W, As, and Sb, as well as alkaline ele-
ments, released from subducting slabs (e.g., Hattori et al.,
2005; Martin et al., 2011; Kodolányi et al., 2012; De-
schamps and Hattori, 2013; Guillot and Hattori, 2013; Pe-
ters et al., 2017). Consequently, the dehydration of sub-
ducted serpentinites takes on a significant role for deriving
both large amounts of water and fluid–mobile elements to
the deep mantle (e.g., Scambelluri et al., 2004; Reynard,
2013; Guillot et al., 2015; Debret and Sverjensky, 2017).
Infiltration of hydrothermal fluids into serpentinite and
serpentinized peridotite also cause ore mineralization en-
riched in S, Ni, Fe, and Co (e.g., Kamenetsky et al., 2016).
Such mineralization is highly controlled by elemental sat-
uration as well as oxygen fugacity ( fO2

), sulfur fugacity
( fS2 or Eh) and silica activity.
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Understanding fluid–mediated processes in serpen-
tinites acquires considerable importance in various fields
of geoscience. For example, characterization of the fluid
evolution and material transfer from slab dehydration to
the mantle wedge is a key step to understand the large–
scale elemental cycles within the solid Earth. The supra–
subduction zone (SSZ) processes, including mantle
wedge serpentinization, are essentially triggered by pro-
grade dehydration of the subducting slabs. Geochemical
studies of SSZ serpentinites thus seem to be necessary for
understanding the dynamics of fluids at active margins.
As part of our current geochemical reconnaissance study
of serpentinites in various geologic settings (e.g., Yamada
et al., 2019a, 2019b), this contribution focuses on excep-
tional aggregates of serpentinite–hosted Ni–Fe alloy, so–
called josephinite, from the Josephine Ophiolite, Oregon,
USA (e.g., Botto and Morrison, 1976; Göpel et al., 1990;
Britten et al., 2017). The Josephine Ophiolite has been
known as a volcanic arc–type SSZ ophiolite in the cir-
cum–Pacific (Fig. 1) (cf. Dilek and Furnes, 2011).

Göpel et al. (1990) was the first to report Pb isotope
ratios of josephinite. They reported the similarity of Pb
isotope ratios of josephinite and those of the diorite in-
trusions in the Josephine Ophiolite and suggested the in-
volvement of hydrothermal fluids associated with the in-
trusions to the formation of josephinite. In order to re–
characterize fluids that evolved and formed josephinite in
serpentinites, in this study, we have carried out both min-
eralogical investigation and Pb isotope analysis using
weighted mean method to josephinite. Using our new da-
ta and pre–existing data by Göpel et al. (1990), we pres-

ent the possibility of a sediment–derived fluid involve-
ment in the josephinite formation.

PREVIOUS STUDIES AND LEAD ISOTOPE
COMPOSITION OF JOSEPHINITE

Josephinite is a nearly monomineralic, metallic rock
composed mainly of Ni–Fe alloy called awaruite, with
minor amount of Ni–arsenides (e.g., Botto and Morrison,
1976). The rock has been found mainly as nuggets in
alluvial placers and as rare in–situ clots in serpentinites
of the Josephine Ophiolite. The Josephine Ophiolite is a
Jurassic oceanic crust sequence of an intra–oceanic arc or
back–arc setting tectonic origin (Fig. 1). The ophiolite
consists of harzburgitic residual peridotite (the Josephine
Peridotite), serpentinized peridotite, ultramafic–mafic cu-
mulates, gabbro, sheeted dike complex, pillow basalt, and
coeval diorite intrusions (Dick, 1974; Harper, 1984; Ke-
lemen and Dick, 1995; Le Roux et al., 2014). Because
of the unusually large size of naturally occurring Ni–Fe
alloy found in the near surface environment, the origin of
josephinite have raised scientific controversy, whether it
came from the Earth’s core, since the late 1970s (e.g.,
Dick, 1974; Bird and Weathers, 1979).

Göpel et al. (1990) determined Pb isotope ratios of
three josephinite samples using a partial dissolution meth-
od. The decontaminated metallic samples yielded iso-
tope values of 206Pb/204Pb = 18.389–18.547, 207Pb/204Pb =
15.570–15.592, and 208Pb/204Pb = 38.058–38.102. These
values were very close to those of the associated diorite
intrusions (206Pb/204Pb = 18.188–18.546, 207Pb/204Pb =

Figure 1. Geologic map and cross–section showing a locality of josephinite–bearing serpentinite of the Josephine Ophiolite, Oregon, USA.
The map was modified after Ramp (1986). The cross–section was partially modified after an un–published map drawn by R.G. Coleman.
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15.533–15.554, and 208Pb/204Pb = 37.852–38.061), how-
ever slightly differed from the parent harzburgite (206Pb/
204Pb = 17.444–18.257, 207Pb/204Pb = 15.543–15.602, and
208Pb/204Pb = 37.342–38.048), which was interpreted as a
signature of hydrothermal fluids associated with the dio-
rite intrusions. Note that the leachate solutions of jose-
phinite acquired from leaching procedure yielded signifi-
cantly higher 207Pb/204Pb ratios (15.618–15.643) than
those from partial dissolution steps.

ANALYTICAL METHODS

Mineralogical characterizations

Preparatory to Pb isotope analysis, an epoxy–mounted
and polished josephinite nugget sample JOS was exam-
ined mineralogically by a field emission–scanning elec-
tron microscope (FE–SEM: JEOL JSM–7100F) equipped
with an energy–dispersive spectrometer (EDS: Oxford
Instruments Ltd., X–max 80 operated by INCA–350) at
Academia Sinica. Major and minor element compositions
of awaruite and Ni–arsenide were analyzed by a field
emission–electron probe micro analyzer (FE–EPMA:
JEOL JXA–8500F) also at Academia Sinica. A 2 µm de-
focused beam was operated for quantitative analysis at an
acceleration voltage of 12 kV and 25 kV with a beam
current of 6 nA and 15 nA for silicates and metallic al-
loys, respectively. Quantitative data were corrected by the
methods of Oxide–PRZ and Metal–PRZ for silicates and
metallic alloys, respectively. To confirm its oxidation
state, and presence of silicate and oxide inclusions in al-
loy phases, O and silicate related elements such as Si and
Al were also analyzed during metal analysis.

In addition, to identify the polymorph of host serpen-
tinite, josephinite–bearing serpentinite sample SRP was
investigated by a confocal Raman microscope (HORIBA
XploRA PLUS) at Tohoku University. A 532 nm solid–
state Nd–YAG laser with 10 mW power was used as laser
source. The Raman spectra were measured ranging from
199.6 to 1194 cm−1 in 1.1 cm−1 steps (2400 gr/mm). The
diameter of laser spot was ~ 2 µm; the exposure time was
50 s (5 s × 10). The Raman shift was calibrated using a
silicon reference.

Pb isotope analysis

The chemical separation of Pb from sample JOS was car-
ried out in a clean laboratory at Okayama University.
Sample JOS was first leached in 0.5 N HBr for 5 min
at room temperature to remove any superficial contami-
nation. The leaching procedure was repeated six times
(L1 to L6). The sample was subsequently dissolved in

1.0 N HBr at 100 °C in 11 steps (PD7 to PD17). The
duration of the partial dissolution ranged from 1 h in
the first 3 steps (PD7 to PD9), to >10 hours in the last
7 steps (PD11 to PD17). Pb was extracted and purified
using HBr–HNO3 media chemistry modified from Lug-
mair and Galer (1992). The Pb isotope analyses were per-
formed at Okayama University using a Finnigan MAT
262 thermal–ionization mass spectrometer in a static
mode. The Pb isotope ratios were corrected for mass dis-
crimination based on the repeated analyses of NIST 981
standard (See Amelin, 2008 for the NIST 981 values).
The reproducibilities for 206Pb/204Pb, 207Pb/204Pb, and
208Pb/204Pb were 0.039, 0.056, and 0.076% (2σ) respec-
tively. The total analytical blank was sufficiently small
(6–18 pg) in comparison to the amount of Pb extracted
from sample JOS (70–150 ng for L and 90–500 ng for
PD), thus no blank correction was applied.

RESULTS

Textural and mineralogic features

The investigated josephinite sample JOS consists mainly of
Ni–Fe alloy; awaruite (Ni2–3Fe) (Fig. 2a). The back–scat-
tered electron (BSE) contrast (Fig. 2b) and the crystal ori-
entation analysis by electron back–scatter diffraction indi-
cate that awaruite in josephinite is aggregates of randomly
oriented anhedral crystals (~ 0.05–0.1 mm in size). An ag-
gregate of awaruite encloses Ni–arsenide (~ 0.02–0.1 mm
in size) (Fig. 2c). Fe and Ni contents of awaruite vary sig-
nificantly; 23.3–27.6 wt% Fe and 70.5–76.5 wt% Ni; the
Ni/(Ni + Fe) atomic ratio ranges from 0.71 to 0.76. Awa-
ruite has a trace amount of Cu (up to 1.2 wt%), Mn (up to
0.02 wt%), As (up to 0.22 wt%), Co (up to 0.67 wt%), and
S (up to 0.40 wt%). Ni–arsenide enclosed in awaruite has a
composition of 67.0–68.3 wt% Ni and 31.6–32.2 wt% As
with trace amount of Fe (up to 2.2 wt%), Mn (up to 0.02
wt%), and Co (up to 0.01 wt%). Representative chemical
compositions of awaruite and Ni–arsenide in sample JOS
are shown in Tables 1 and 2, respectively.

The Raman spectrum obtained from sample SRP
shows diagnostic peaks at ~ 227, ~ 373, ~ 683, ~ 1036,
~ 3664, and ~ 3694 cm−1 (Fig. 3), indicating that host
serpentinites composed mainly of antigorite. Note that
no lizardite was found from any investigated host serpen-
tinites. See Table 3 for the representative chemical com-
position of antigorite in SRP.

Pb isotope ratios

The obtained Pb isotope ratios (206Pb/204Pb, 207Pb/204Pb,
and 208Pb/204Pb) from sample JOS are listed in Table 4

Revisiting Pb isotope signatures of josephinite 3
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and illustrated in Figure 4. The Pb isotope ratios of leach-
ates (L1 and L5) and the earlier steps of partial dissolution
(PD7 to PD11) are variable. This suggest that the Pb iso-
tope ratios of the leachates (L1 and L5) and the earlier
steps of the partial dissolution steps (PD7 to PD11) may
represent an altered signature. However, all ratios con-

verge to a homogeneous value towards the later steps of
the partial dissolution (PD12 to PD 17). This homogeneity
allowed to calculate weighted mean values that gives
the primordial Pb isotope ratios. Using a R package
‘IsoplotR’ (Vermeesch, 2018), we obtained 206Pb/204Pb =
18.3283 ± 0.0020 (MSWD = 0.49), 207Pb/204Pb = 15.5645 ±

Figure 2. Textural features of the investigated josephinite sample JOS. (a) A photograph of a josephinite nugget from Josephine Ophiolite. (b)
A back–scattered electron (BSE) image of aggregates of awaruite in josephinite. (c) A BSE image showing Ni–arsenide enclosed within
awaruite.

Table 1. Representative chemical composition of awaruite in sample JOS analyzed by FE–EPMA
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0.0020 (MSWD = 0.36), and 208Pb/204Pb = 38.0723 ±
0.0061 (MSWD = 0.50).

DISCUSSION

A new interpretation on Pb isotope ratios of josephinite

In Figure 5, the Pb isotope ratios of josephinite obtained in
this study are shown together with those of Göpel et al.
(1990). The newly obtained Pb isotope ratios of josephinite
indicates that it is enriched in 207Pb/204Pb ratio with MORB
source–like 206Pb/204Pb and 208Pb/204Pb ratios, which show
a consistency with the previous study (Göpel et al., 1990).

They reported that the Pb isotope ratios of josephinite over-
lap with those from the diorite intrusions associated with
the Josephine Ophiolite and suggested that Pb isotope fea-
tures of josephinite–forming fluid may reflect arc magmatic
processes. Similar Pb isotope ratios were reported from the
back–arc seamounts in the central Izu–Bonin intra–oceanic
arc (Ishizuka et al., 2003).

However, josephinite contains Ni–arsenide inclu-
sions (Botto and Morrison, 1976; this study). The pres-
ence of Ni–arsenide indicates the infiltration of As–bear-
ing fluids during or prior to the awaruite crystallization.
Deschamps et al. (2012) studied bulk–rock trace elements
geochemistry of serpentinites from Cuba and Dominican
Republic. They reported remarkable enrichments of As
and Sb only in antigorite–bearing subducted serpentin-
ites. The As enrichment was also reported in an eclo-
gite–bearing, antigorite serpentinites in the Tso Morari
region of NW Himalayas (Hattori et al., 2005). Those
extreme enrichment of As in antigorite serpentinites
was interpreted as an input of As due to the involvement
of sediment–derived fluids with high As concentration. In
addition, in case of Cuba and Dominican Republic occur-
rence, the geochemical fingerprint of sediment–derived
fluids was also supported by high 207Pb/204Pb ratios (De-
schamps and Hattori, 2013). Considering the presence of
Ni–arsenide and the enriched 207Pb/204Pb ratios in jose-
phinite, the involvement of sediment–derived fluids to the
josephinite formation cannot be ruled out.

Perspectives

Awaruite is the most common Ni–Fe alloy found in ser-
pentinite and/or serpentinized peridotite. It is well known
that hydrogen can be produced during the initial stages of
low–temperature serpentinization, which forms serpen-
tine and magnetite from Fe–rich brucite (e.g., Bach et
al., 2004; Sleep et al., 2004; Frost and Beard, 2007; Klein
et al., 2009). Such Hydrogen–bearing fluids are consid-
ered to buffer the reduced environment in serpentinite
that can form alloys such as awaruite.

The presence of antigorite in josephinite–hosting ser-
pentinites suggests that local awaruite concentration pro-
cesses to form josephinite take place in a stability field of
antigorite at a temperature of ~ 350–500 °C (e.g., Guillot
et al., 2015). However, awaruite has been reported in low–
temperature hydrothermally altered ocean floor serpentin-
ites since the early time of serpentinite studies and was
also considered to form in orogenic antigorite serpentin-
ites (Hultin, 1968; Trommsdorff and Evans, 1977). Re-
cently, Milidragovic and Grundy (2019) reported the oc-
currence of awaruite within a large body of antigorite–
bearing serpentinite of Trembleur ultramafic unit from

Table 2. Representative chemical composition of Ni–arsenide in
sample JOS analyzed by FE–EPMA

Figure 3. Raman spectrum of antigorite from josephinite–bearing
host serpentinite sample SRP.

Revisiting Pb isotope signatures of josephinite 5
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the Cache Creek terrane, central British Columbia, Cana-
da. Furthermore, Foustoukos et al. (2015) conducted lab-
oratory experiments which revealed that awaruite can be
stable at relatively high fO2

above QFM buffer, which is
in contrast with previous thoughts. These suggest that
awaruite may form in serpentinites from diverse tectonic

Table 3. Representative chemical composition of antigorite in sample SRP analyzed by FE–EPMA

Table 4. Pb isotope ratios of leachates and etched solutions of
sample JOS

Figure 4. Plots showing the results of Pb isotope ratios of leach-
ates solution (L1 and L5) and etched solutions of partial disso-
lution steps (PD7 to PD17). The vertical line and the surround-
ing shaded band represent the weighted mean values calculated
using a R package ‘IsoplotR’ (Vermeesch, 2018). The weighted
means were obtained using each isotope ratio of the later partial
dissolution (PD12 to PD 17) shown in grey columns; leaching
(L1 and L5) and early partial dissolution steps (PD7 to PD11)
shown in white columns with narrow width were omitted from
the calculation.

M. Kakefuda, T. Tsujimori, K. Yamashita, Y. Iizuka and K.E. Flores6
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setting under various redox conditions.
Using the weighted mean method, we have newly

obtained the precise Pb isotope ratios of josephinite. Our
results can be evaluated as one of the references Pb iso-
tope ratios in the SSZ serpentinites. Although, it is be-
lieved that Pb isotope ratios of serpentinites can be easily
modified by the fluids which are enriched in fluid–mobile
elements, a strategy focusing on Pb isotope studies of
awaruite would bring a new opportunity to understand
fluids evolution in the SSZ serpentinites. To better under-
stand the fingerprints of fluid processes in the SSZ ser-
pentinites, further isotope studies may appear necessary,
such as Li, B, Mg, and Fe.
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