Surface Energy Budget at Amdo on the Tibetan Plateau using GAME/Tibet IOP98 Data

By Kenji Tanaka

Department of Civil and Environmental Engineering, Faculty of Engineering, Kumamoto University, Kumamoto, Japan

Hirohiko Ishikawa, Taiichi Hayashi

Disaster Prevention Research Institute, Kyoto University, Kyoto, Japan

Ichiro Tamagawa

Department of Civil Engineering, Faculty of Engineering, Gifu University, Gifu, Japan

and

Yaoming Ma

Cold and Arid Regions Environmental and Engineering Research Institute, CAS, China

(Manuscript received 4 February 2000, in revised form 24 October 2000)

Abstract

In the east of Tibetan Plateau, Amdo, the surface energy flux measurement with eddy correlation technique was conducted during the Intensive Observation Period (IOP) of GEWEX Asian Monsoon Experiment (GAME). This study is a preliminary analysis on surface energy budget at Amdo with these data.

There is a remarkable change in sensible and latent heat fluxes between pre-monsoon season and summer monsoon season. In the pre-monsoon, the ground surface and the surface layer were very dry. The specific humidity was 2 to 4 g/kg and the sensible heat flux was dominant. As the monsoon progresses, the surface becomes wet due to almost daily precipitation. Accordingly, the sensible heat flux decreases and the latent heat flux increases. In the beginning of September, nearly the end of the summer monsoon, the latent heat flux exceeds the sensible heat flux.

The ground heat flux at the surface was estimated using the observed soil temperature profile with the aid of the thermal conductive equation. The computed ground heat flux corresponds to the residual of the surface energy balance in the daytime. But disagreement occurred in the evening, when the surface temperature rapidly decreases. On the daily averaged bases, the surface energy balance is not well closed. In terms of closure ratio, the value in a typical clear day was 67%. Another rough estimation of soil heat flux is made, in which the heat needed to melt the soil water and to heat up the soil layer was calculated. According to this, it was estimated that about 30 W/m² (20% of net radiation) of soil heat flux was required on average over April 20 to July 20, but the measured soil heat flux was only 5.7 W/m².

1. Introduction

The GEWEX (Global Energy and Water cycle Experiment) Asian Monsoon Experiment (GAME) started in 1996. The Tibetan Plateau is one of
the major experimental regions of the GAME. It is in the midlatitude (29°~38°N) of the eastern Eurasian continent (80°~100°E), where the averaged altitude is more than 4,500 m, and it covers about 1.2 million km² area.

Tibetan Plateau has been thought to play a very important role in the progress of Asian monsoon, as discussed by many authors. The impact of the Plateau on the surrounding region has been discussed for its orographic effect and for the thermal effect as an elevated heat source (or sink) in the midtroposphere. The Plateau blocks the tropospheric circulation, and contributes to the development of the monsoon circulation in summer and the formation of the Siberian high-pressure system in winter (e.g., Manabe and Terpsta 1974). The surface of the Plateau is strongly heated by incoming solar radiation in daytime (and cooled in the night by strong longwave radiation), so that the air over the Plateau is relatively warmer (or cooler) than that of surrounding air at same altitude. Flohn (1959) discovered the high temperature anomaly at 500 hPa level over the Plateau. Thus, it is important to estimate the heat flux from the plateau surface to the atmosphere to understand the mechanism of energy cycle over Asian Monsoon region.

Before the GAME/Tibet, the First Global Atmospheric Research Program (GARP) Global Experiment (FGGE) (e.g., Yeh and Gao 1979) and the Chinese Qinghai-Xizhang Plateau Meteorology Experiment (QXPMEX) were conducted (e.g., Johnson et al. 1987; Yeh 1988; Zhang et al. 1988; Ji et al. 1989). With these data several indirect methods have been employed to estimate surface energy fluxes by Chinese scientists. Gao and Liu (1984) and Zhang et al. (1988) estimated the surface flux using Bowen Ratio Technique. The surface heat and moisture fluxes were also estimated indirectly with the use of the upper-air observation data. In this, both sensible and latent heat fluxes were estimated as the residual of the vertically integrated heat or moisture budget equation. Li and Yanai (1992) reviewed those studies and summarized that they had demonstrated the presence of positive temperature anomalies over the Tibetan Plateau and the large-scale vertical circulation induced by the plateau throughout the nine months from winter to summer, and that before the onset of the summer monsoon, the heat source on the plateau was surrounded by intense cooling in the adjacent regions.

Although these previous studies have unveiled the features and the roles of the plateau boundary layer to a considerable extent, present knowledge is not enough to contribute to the development of prognostic model for the land-atmosphere processes over the Plateau. In the GAME/Tibet, an intensive observation of land surface-atmosphere interaction was conducted at a site called Amdo. In addition to the conventional wind-, temperature- and humidity-profiles and radiation measurements, the atmospheric turbulence was measured almost continuously for about 4 months, from late May to early September in the summer of 1998. This turbulence measurement provides the eddy sensible and latent fluxes, which are probably the first attempt to estimate the sensible and latent heat fluxes 'directly' over the plateau.

In this paper, using the data obtained at Amdo during the GAME/Tibet IOP, preliminary analysis on surface energy budget is presented. The sensible heat and the latent heat fluxes are directly obtained from the eddy correlation method. The soil heat flux is estimated from the data of the soil layer observation.

The instrumentation of planetary boundary layer observation is described in section 2. General features of the meteorology are introduced in section 3. In section 4, the typical diurnal changes of the surface energy budget are introduced first. Then, the surface energy balance is discussed. In this section, an attempt of ground heat flux estimation using the near surface soil temperature and moisture data is also presented. In section 5, we summarize this study.

2. Instrumentation

Amdo is located on the eastern Tibetan Plateau along the Xisang-Qinghai highway (Figure 1). The site (31°14.468’N, 91°37.507’E) is about 6 km west of the town of Amdo. The altitude is about 4800 m. The surface is almost bare soil in the pre-monsoon dry season, but is covered with scattered short grasses during summer monsoon season. The following observation facilities were installed at the site.

2.1 PBL-tower measurement

A fourteen-meter tower was set up to measure the temperature, humidity and wind profiles in the surface layer. The MILOS500 system of VAISALA was used to collect and record the data. In addition these profiles atmospheric pressure, precipitation, and soil parameters were also measured by this system. Their ten-minute averages were stored
consequently. The sensors used in the system are listed in Table 1.

2.2 Radiation

Four components of radiation, upward and downward fluxes of short wave and long wave radiation, were measured and recorded by an independent system. The sensors used were EKO MS-801 (short wave radiation) and Eppley PIR (long wave radiation). In measuring the long wave radiation, the dome and the base temperatures of each radiometer were also measured for correction with secondary long wave emission from the dome of sensor (Shimura 1996). A data logger (VAISALA, QLC50) sampled the data every second and the 10-minutes averages were recorded in it. In order to synchronize the logger clock with that of the tower system, the data of downward short wave radiation from both systems were used.

2.3 Turbulent flux measurement system

The turbulent flux measurement system was com-
posed of a sonic anemo-thermometer (DAT-300, Kajjo) and an infrared hygrometer (AH-300, Kajjo). A clinometer was also used to measure sensor inclination. The infrared hygrometer was used to detect the high frequency fluctuation. A capacity-type hygrometer and thermometer (Pt-100) were also set near the infrared hygrometer, and used to measure the low frequency fluctuation of the specific humidity. The sensor assembly was set up on the top of a pole (sensor height is about 2.8 m) about 20 m from the tower. The data were sampled in 10 Hz and recorded in magnetic optical disks. During the IOP, more than 4800 thirty-minute data were obtained.

The sensible heat flux (H) and the latent heat (LE) flux were calculated as,

\[H = \bar{\rho} c_p \bar{w}^+ T' \]
\[LE = -\bar{\rho} \bar{w}^+ q' \]

where \(c_p \) and \(\bar{\rho} \) are the specific heat and the density of moist air, \(w \) the vertical velocity, \(T \) the temperature, \(q \) the specific humidity and \(I \) the latent heat of water (2.5 \(\times 10^6 \) J/kg). The dash represents the fluctuation of the variable, and the over bar represents averaged value in processing unit (30 minutes, 18000 data in one run). Several corrections are included in the calculation. The detail of the data procession is described in Tamagawa (2000).

3. Results

3.1 Tower data

The measured meteorological variables are shown in Figure 2. It is seen that the rain started in the middle of June. Unfortunately, the tower data failed at the start of the monsoon during 6–15 June. Before the onset of monsoon, the specific humidity was ranged from 2–4 g/kg, but after that it increased to 8–10 g/kg. The surface temperature, which is computed from the upward and downward long wave radiations assuming the surface emissivity (\(\varepsilon = 0.98 \)), has a remarkable feature. The diurnal variation is as large as 50 °C before the monsoon, but it reduces to about 20 °C after the onset of monsoon. In the wind velocity large diurnal variations also exist before the onset of monsoon, but the range of variation also reduces after the on set.

![Fig. 2. Some meteorological variables observed at Amdo on GAME/Tibet during IOP (May 11–Sep. 20, 1998), obtained from PBL tower measurement except (c). (a) Wind speed at 1.9 m, (b) Atmospheric temperature at 1.55 m, (c) Surface Temperature calculated from long wave radiation, (d) Specific humidity, (e) Daily precipitation and (f) Soil heat flux at 10 cm below surface.](image-url)
Fig. 3. Radiation fluxes observed at Amdo. Each panel shows (a) downward shortwave radiation, (b) upward shortwave radiation, (c) downward longwave radiation, (d) upward longwave radiation, and (e) the net radiation.
of monsoon.

3.2 Radiation

Figure 3 shows all the recorded data of each radiation component and net radiation. The downward short wave radiation (DSW, Figure 3(a)) reaches about 1,100 W/m² at local noon on fine days in summer. The transmission rate of incoming solar radiation from the top of the atmosphere was estimated as about 85% in cloudless conditions. The value is about 10–15% greater than that observed at the typical sea level station. This is due to the high altitude of the site, thus a shallower atmospheric layer between the top of the atmosphere and the ground surface.

On the other hand, the downward longwave (DLW, Figure 3(c)) marks in 250 W/m²~350 W/m². Higher DLW values more than 300 W/m² might result from the emission from clouds. Under clear sky conditions, DLW was about 50 W/m² smaller than that observed at a typical sea level site.

The upward short wave (USW, Figure 3(b)) is dependent on surface albedo. Figure 4 shows the 5-day averaged surface albedo. The averaged albedo decreased from about 0.20 to about 0.15 during June and July, due to the increase of the surface wetness and the growth of the grass.

The upward long wave (ULW, Figure 3(d)), equivalent to the surface temperature, varies diurnally more than 300 W/m² in the pre-monsoon season, but the diurnal amplitude of ULW decreases to less than 150 W/m² as the summer monsoon progresses.

The net radiation balance is shown in Figure 3(e). As the whole, strong short wave irradiation and long wave emission characterize the plateau
radiation balance in the pre-monsoon season. In summer monsoon season, the reduced short wave irradiation seems to be compensated by reduced long wave emission, so that no remarkable distinction can be seen in the radiation budget between the pre-monsoon and monsoon seasons.

3.3 Turbulent flux

All data of sensible and latent heat fluxes are plotted in Figure 5. In pre-monsoon season, before the middle of June, the sensible heat flux reaches 400 W/m² in the daytime, nearly 10 times greater than the latent heat flux. As summer monsoon progresses, the latent heat flux increases gradually nearly 300 W/m², but the sensible heat flux decreases and falls to 150 W/m² at daily maximum. Such a gradual change of these two fluxes matches well with the surface temperature change, specific humidity, etc. (see Figure 2). During the night, the sensible heat flux was downward. A strong downward sensible heat flux (~100 W/m²) was calculated occasionally. Seeing the raw record, this corresponds to intermittent turbulence under very stable condition. However, the adequacy of the computed values are somewhat questionable. It should be noted that the power of IR source was suddenly weakened on August 17. And the lamp was replaced on August 23. Thus, the latent heat flux is unreliable during August 17–23. Also, the precipitation degrades the quality of measurement of both the SAT and IR hygrometer.

From the data presented in Figures 2 to 5, a change of surface climate can be seen in the middle of June, i.e., the onset of summer monsoon. Before the onset, the diurnal change of the surface temperature reaches 50 °C, which contributes to the great sensible heat flux. After the onset of monsoon, the near surface soil moisture gradually becomes wet, due to the frequent precipitation. As the near surface soil moisture increases, both the latent heat flux and the soil heat capacity also increase. Thus, rising surface temperature is restricted and the sensible heat flux becomes lower (Figure 2(c)).

4. Discussion

4.1 Diurnal change of surface energy budget on typical clear sky days

In this section diurnal change of surface energy budget at typical sunny days are discussed with reference to the simplest form of surface energy balance (SEB) equation;

\[
Rn - G_{sfc} = H + LE.
\]

(3)

where \(G_{sfc}\) is the ground diffusive heat flux at surface.

Figure 6 shows the diurnal change of surface energy flux on June 12, 1998 as a case of pre-monsoon. In the morning, as the sun rises at about 0730 BST (Beijing Standard Time), net radiation flux increases rapidly. The sensible heat flux starts to increase at 1 hour after the sunrise, when the net radiation becomes positive. The sensible heat flux had its maximum value of about 300 W/m² at 1330 BST, about 47% of net radiation flux. On the other hand, the latent heat flux holds less than 40 W/m², about 6% of net radiation. The reason is that the

Surface Energy Flux (W/m²) (1998/6/12)

Fig. 6. The diurnal change of surface energy fluxes, on 1998/6/12, the pre-monsoon fine condition. \(Rn\): net radiation flux, \(H\): sensible heat flux, \(LE\): latent heat flux and \(Rn-H-LE\): the residual. BST represents Beijing Standard Time.

Surface Energy Flux (W/m²) (1998/7/16)

Fig. 7. Same as to Figure 6 but for July 16, 1998. Soil heat flux at 10 cm depth is also plotted.
near surface soil is very dry on that day: the volumetric soil water content is about 0.17 m³/m³ at 4 cm below surface. The residual flux holds nearly 50% of net radiation, about 320 W/m² at the maximum. This flux should be balanced by the ground diffusive heat flux.

Figure 7 shows the diurnal change of surface energy flux on July 16, 1998. This was the only day when cloud free sky prevailed throughout the daytime during the mid-monsoon. (During summer monsoon, cumulus cloud covered the sky in the afternoon almost every day, which brought some precipitation.) Both the sensible and latent heat fluxes start to increase when the net radiation becomes positive. During the daytime the sensible heat flux holds about 20~25% of the net radiation, and has the maximum value of 180 W/m². The latent heat flux is about the same as the sensible heat flux in the morning. After 1200 BST, however, the latent heat flux continues to increase to about 250 W/m², while the sensible heat flux sustains the value at 1200 BST.

Figure 8 shows the case of September 5, 1998. The sensible heat flux started to increase about one hour after the net radiation became positive. The latent heat flux began to increase at 0830, but fell down to 0 again at 0930, and started to increase again at 1030. The surface temperature, atmospheric temperature, soil temperature (10 cm) and atmospheric specific humidity of the day are plotted in Figure 9. The surface temperature was below 0°C in the early morning and rose up to 0°C in 0930 BST. The specific humidity held nearly constant between 0800~1000 then started to increase. Therefore, the complicated behavior of sensible and latent heat fluxes seem to relate to the melting of near surface frozen water.

In each of the three cases above, the residual flux reaches 300 W/m² in the daytime maximum. The reported typical value of the ground heat flux at a bare soil surface is 100 W/m², about 8~15% of the net radiation in the daytime (see, e.g., Betts and Ball 1998; Garatt 1993). The soil heat flux measured by a heat panel at 10 cm below the surface ranges only between -30~60 W/m². If we assume the surface energy balance, the heat storage of near surface soil layer (from the surface to the 10 cm depth) must amount to 250 W/m² in the maximum, which seems extraordinary. In the next section, the ground diffusive heat flux at surface is estimated with the near surface soil temperature profile, in order to discuss the possibility of such a large heat flux into soil.

4.2 Ground diffusive heat flux (G_{sfc})

The ground diffusive heat flux (G_{sfc}) is difficult to measure directly. G_{sfc} can be estimated indirectly from the soil temperature (and moisture) profile. In this study, G_{sfc} is computed from the following equation,

\[G_{sfc} = G_z + \int_0^z C_s \frac{\partial T}{\partial t} dz, \] \hspace{1cm} (4)

where \(G_z \) (J/m³) is the volumetric heat capacity, and \(G_z \) is the observed soil heat flux below z from the surface (z = 10 cm was taken here).

The heat capacity of soil is given simply as,

\[C_s = (1 - \eta_{\text{sat}}) \rho d C_a + \eta_{\text{wo}} \rho_w C_w, \] \hspace{1cm} (5)

where the first term of right hand side of Eq.(5),
Table 2. Soil parameters as a function of Elven USDA (United State Department of Agriculture, 1961) textual classes plus peat.

<table>
<thead>
<tr>
<th>Soil Type</th>
<th>(\theta_w (\text{m}^3/\text{m}^3))</th>
<th>(\Psi_{aw} (\text{m}))</th>
<th>(b) (1 - (\eta_{sat})) (\Psi_{aw} (\text{MJ}/\text{m}^2\text{K}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sand</td>
<td>0.380</td>
<td>-0.121</td>
<td>4.06</td>
</tr>
<tr>
<td>Loamy Sand</td>
<td>0.410</td>
<td>-0.090</td>
<td>4.38</td>
</tr>
<tr>
<td>Sandy Loam</td>
<td>0.435</td>
<td>-0.218</td>
<td>4.90</td>
</tr>
<tr>
<td>Silt Loam</td>
<td>0.485</td>
<td>-0.786</td>
<td>5.30</td>
</tr>
<tr>
<td>Loam</td>
<td>0.451</td>
<td>-0.478</td>
<td>5.29</td>
</tr>
<tr>
<td>Sandy Clay Loam</td>
<td>0.420</td>
<td>-0.299</td>
<td>7.12</td>
</tr>
<tr>
<td>Silt Clay Loam</td>
<td>0.477</td>
<td>-0.356</td>
<td>7.75</td>
</tr>
<tr>
<td>Clay Loam</td>
<td>0.476</td>
<td>-0.630</td>
<td>8.52</td>
</tr>
<tr>
<td>Sandy Clay</td>
<td>0.436</td>
<td>-0.153</td>
<td>10.40</td>
</tr>
<tr>
<td>Silt Clay</td>
<td>0.492</td>
<td>-0.490</td>
<td>10.40</td>
</tr>
<tr>
<td>Clay</td>
<td>0.482</td>
<td>-0.405</td>
<td>11.40</td>
</tr>
<tr>
<td>Peat</td>
<td>0.863</td>
<td>-0.356</td>
<td>7.75</td>
</tr>
</tbody>
</table>

\((1 - \eta_{sat})\rho_d c_d\), represents the volumetric heat capacity of soil under dry condition. And \(\eta_{sat}\), \(\rho_d\), and \(c_d\) represent the volumetric soil water content, the density of liquid water (1.00 \times 10^3 \text{ kg/m}^3), and the specific heat capacity of liquid water (4.18 \times 10^3 \text{ J/kgK}), respectively.

The near surface soil temperature profile, from the surface to the 10 cm depth, is computed from a thermal conductivity equation,

\[
C_s \frac{\partial T_s}{\partial t} = \frac{\partial}{\partial z} \left(k_s \frac{\partial T_s}{\partial z} \right),
\]

where \(T_s\) is the soil temperature and \(k_s\) the thermal conductivity of soil. The thermal conductivity is parameterized with an empirical function by Al Nakshabandi and Kohnke (1965),

\[
k_s = \begin{cases}
419 \exp\{- (P_T + 2.7)\} & P_T \leq 3.1 \\
0.172 & P_T > 3.1
\end{cases}
\]

where \(P_T = \log_{10} \Psi\), and \(\Psi = \Psi_{sat}(\eta/\eta_{sat})\) is moisture potential. The profile of soil water content is given from Soil Moisture and Temperature Mea-

![Daily averaged energy fluxes (W/m²)](image)

Fig. 11. Surface energy fluxes in daily average. 100 W/m² is equivalent to 8.64 MJ/m²/day. \textit{Rn-H-IE}: the residual flux from SEB equation. \textit{H}: the sensible heat flux, \textit{LE}: the latent heat flux. The total height of three bars show the net radiation flux (\textit{Rn}).
measurement System (SMTMS) moisture data at 4 cm and 20 cm with linear approximation. Unfortunately, soil parameters, η_{sat}, Ψ_{sat}, ρ_d, and c_d are still unknown. Therefore, we used these parameters from United State Department of Agriculture (USDA) (see Table 2) soil data. Although all kinds of soil types except sand and peat were tested, difference of each result was quite small.

The computed G_{sfc} is compared with $Rn-H-IE$ in Figure 10. The calculated soil heat flux fits the residual $Rn-H-IE$ well in the daytime. The maximum value (about 350 W/m2) is also well reproduced. However, from the late afternoon to the midnight, the estimated G_{sfc} falls rapidly. The calculation produces the G_{sfc} as large as -300 W/m2 in the minimum (upward), while the residual $Rn-H-IE$ marks about -100 W/m2. On the diurnal average, $Rn-H-IE$ is 67.8 W/m2 (37.8% of Rn), but G_{sfc} is only 24.0 W/m2 (13.2% of Rn). Therefore, there exists 43.8 W/m2 (24.6% of Rn) unexplained residual flux on the diurnal average. Although the ambiguous heat storage by near surface soil layer can be explained partially by this estimation, it is not consistent with the energy budget on daily average.

4.3 Daily averaged surface energy budget

The daily averaged surface energy flux during IOP is shown in Figure 11. The bar with dense tone represents the sensible heat flux, the gray tone latent heat flux and the white part the residual. The total height of each bar shows the net radiation.

If we compute a simple arithmetic average of the available daily value from May 21 to July 21, the averaged value of each component is:

$$
\begin{align*}
Rn &= 128.3 \\
H &= 55.7 \\
IE &= 27.0 \\
G_{10\text{ cm}} &= 5.7
\end{align*}
$$

(W/m2)

where the $G_{10\text{ cm}}$ is taken from the soil observation. From this averaged data, the residual $Rn-H-IE$ is calculated as

$$
Rn - H - IE = 45.6 \quad (W/m^2).
$$

This value is about 36% of the net radiation. On the other hand, the ground heat flux at 10 cm below surface is only 5.7 W/m2, which is less than 5% of the net radiation. Thus, unresolved flux reaches more than 30% of the net radiation. If we assume that this unresolved part should be stored in the near-surface layer, the soil layer needs to be heated by more than 20°C, which is not observed.

In reference to Eq.(3), the measurement error in net radiation (Rn) is expected to be smaller than that of the other components. Therefore, the unresolved flux, if it is caused by measurement problem, may be attributed to the turbulence flux or soil heat flux. As for the turbulence measurement, the sensible heat flux may be more reliable than the latent heat flux. As seen in Figure 11, the residual increases as the latent heat flux increases. This suggests a possibility of underestimation of latent heat flux.

As for the ground diffusive heat flux, we hereafter will give a bulk estimation of the soil heat flux. The near surface soil layers are frozen during the winter season at the Amdo site. The melting of the soil layer starts in April and proceeds to the deeper layers. The heat flux necessary to feed this melting and the succeeding temperature rise of the soil layers is roughly estimated in the following.

Fig. 12. Daily averaged soil temperature (a) and soil moisture (b). Legends shows the measurement level below surface. Obtained by Soil Moisture and Temperature Measurement System (SMTMS) at Amdo site.
The soil temperature and moisture data are obtained by the SMTMS, installed beside the PBL tower. The system measures soil temperature at 10 depths and soil moisture at 6 depths ranging in 4–279 cm below the surface. Figure 12 shows the 1-day averaged soil moisture and soil temperature. In the record of soil temperature, there exists a period when the temperature stayed near 0°C in each layer. During this period the soil water was melting and it absorbed the latent heat for fusion. The latent heat for fusion, \(L_f \), is about one-eighth of the latent heat for evaporation, \(L_f = 3.38 \times 10^5 \) J/kg.

Information on soil water content during the ice phase is necessary. In the ice-phase, the soil moisture sensor (TDR) cannot measure the soil water content correctly. As seen in Figure 12b, the output of the soil moisture sensor suddenly rises when the soil water melts. We assume that the value immediately after the sudden rise of record exhibits the soil water content of the ice-phase. Seeing the record in Figure 12, we assume the soil moisture content as 20% and estimate the heat capacity as 2.0 MJ/m² using Eq.(7). In addition to this, the following bold assumptions are made for the rough estimation: 1) The heat flux beneath the lowest level is negligible; 2) The soil water began to melt on 4/20 at 4 cm, and melting level proceeded downward and reached 279 cm at July 20.

With these assumptions, the latent heat of fusion required to melt the frozen soil water down to 279 cm is estimated as:

\[
F = 0.200 \times (2.79 - 0.04) \times 1.00 \times 10^3 \\
\times \frac{3.34 \times 10^5}{\text{Density of water}} \\
\times \frac{1.837 \times 10^8}{\text{Latent heat for fusion}}
\]

Assuming that the melting took place between April 20 to July 20, about 24 W/m² of heat flux is necessary on average. Also, the heat flux needed to heat up the soil layer is roughly estimated as 5 W/m². In total, about 30 W/m² of average heat flux must be transferred to the soil layer from the surface during the period. This value is considerably larger than the observed soil heat flux at 10 cm. If this estimation is valid, a larger part of the unresolved residual in Figure 11 is explained.

5. Conclusion and remarks

At Amdo site on the Tibetan Plateau, an intensive surface layer observation was conducted during May to September 1998 and the following features were revealed.

1) Each component of the surface radiation flux observed over the plateau had the distinct feature of the optically thin atmosphere. The downward short wave radiation, with little attenuation by the atmosphere, had about 1,100 W/m² at local noon under clear sky condition during summer. Due to the strong surface heating, the surface temperature, and hence the upward long wave radiation, increased rapidly in the daytime, especially in pre-monsoon season. On the other hand, due to the optically thin atmosphere above, the downward long wave radiation was smaller than that observed at a typical sea level site, and the net radiation was not so much greater than low land surrounding the plateau.

2) During pre-monsoon, the plateau was very dry, with the specific humidity between 2–4 g/kg. The diurnal variation of the surface temperature was as large as 50°C and the sensible heat flux was dominant. The latent heat flux was as small as 50 W/m² in the diurnal maximum. As the summer monsoon progressed, the surface became wet by frequent precipitation. According to this, diurnal variation of surface temperature reduced to about 20°C and the share of the latent heat flux increased. The specific humidity increased to 8–10 g/kg.

3) Detailed data for the diurnal variation of surface fluxes have been obtained, that can be used to validate existing land-atmosphere interaction models and to develop new models.

4) The surface energy budget was, however, not well closed from the observed data. In terms of the closure ratio, CR = \((H + LE)/(Rn - G)\), the present results shows CR = 0.7 and sometimes as low as 0.67. This kind of imbalance has been pointed out by Stammard et al. (1994). He reported that the CR typically ranges between 0.8~0.9 for an agricultural site. Kizer and Elliot (1991) reported a lower value 0.7. Considering the rather sparse vegetation of the site, it is necessary to pursue the cause of imbalance further.

There are various possibilities for this imbalance. One is the underestimation of latent heat flux due to the sensor instability. The sensor of the infrared hygrometer does not work well during and several hours after precipitation. We also showed a bulk estimation of heat transfer to the deeper soil layers needed to melt frozen soil water and heat up the soil layer down to 3 meters. The amount
was enough to explain the residual of surface heat balance. This phenomenon could have significant
effect to the surface energy budget, so that the
more detailed observational studies are required in
future. Besides these instrumentation problems,
there exists a discussion that a very weak system-
atic vertical flow can cause such an imbalance (Lee
1998). Further systematic research is necessary to
figure out the cause of flux imbalance.

Acknowledgments

This work has conducted using the data obtained
during the Intensive Observation Period in 1998.
The observation was conducted in rather tough
conditions over the Plateau. The authors would
like to express their special thanks to Prof. Jienn-
ing Wang of Cold and Arid Regions Environmental
and Engineering Research Institute (CARRERI),
Chinese Academy of Sciences, for his outstanding
coordination throughout the project. Mr. Zey-
oung Hu, Mr. Hongchun Gao and other staffs of
CARRERI are also acknowledged for their as-
tistance during the observation. The thanks are ex-
tended to Prof. Osamu Tsukamoto of Okayama
University, Dr. Jun Asanuma at Tsukuba Uni-
versity, Mr. Yongchiao Qi at Ehime University, and
other Japanese staffs who engaged in to the bound-
ary layer observation during the IOP. The soil layer
data are provided by the courtesy of Prof. Toshio
Koike at Tokyo University.

References

Al Nakshabandi, G. and H. Kohnke, 1965: Thermal
conductivity and diffusivity of soils as related to
soil moisture tension and other properties, Agric.
Bastiasanesen, W.G.M., 1995: Regionalization of sur-
face flux densities and moisture indicators in com-
posite terrain. A remote sensing approach under
clear skies in Mediterranean climates. Ph.D. the-
sis, Agricultural university, 273 pp. [Available
from DLO-Staring Centre, P.O. Box 125, 6700
AE Wageningen, the Netherlands]
Betts, A.K., J. Ball, A.C.M. Beljaars, M.J. Miller, and
P.A. Viterbo, 1996: The land surface-atmospheric
interaction: a review based on observational and
global modeling perspectives, J. Geophys. Res.,
101, 7209–7225.
— and J. Ball, 1998: FIFE Surface Climate and
Site-Average Dataset 1987–89, J. Atmos. Sci.,
55, 1091–1108.
Byun D.W., 1990: On the analytical solutions of flux-
profile relationships for the atmospheric surface
Floh, H. 1959: Bemerkungen zur Klimatologie von
Hochasian. Abhandlungen der mathematisch-
naturwissenschaftlichen klasse, 14, 1409–1431
Chen, L., T. Duan and W. Li, 1985a: Heat source vari-
ation and characteristics of energy budget over
the Qinghai-Xizhang plateau during the 1979
Clapp, R. and G. Hornberger, 1978: Empirical equa-
tions for some soil hydraulic properties. Water
Gao, G. and Y. Liu, 1979: a study of the radiation
balance, heat balance and heat and cold sources
on the earth’s surface in eastern Asia. Scientia
Atmosphic Sinica, 3, 12–20 [in Chinese].
Garrett, J.R. 1993: The Atmospheric Boundary Layer,
Cambridge University press, 312pp.
Ji, G., Q. Zhong and Z. Shen, 1989: Advances in ob-
servation and research of the surface heat source
over the Qinghai-Xizang plateau. Plateau Mete-
rology, 5, 127–132.
Johnson, D.R., M. Yanai and T.K. Schaak, 1987:
Global and regional distributions of atmospheric
heat sources and sinks during the GWE. Mon-
soon Meteorology, C.P. Chang, and T.N. Krish-
systems for measuring evapotranspiration, Trans.
Kustas, W.P., J.H. Prueger, K.S. Humes, and P.J.
Starks, 1999: Estimation of surface heat fluxes at
field scale using surface layer versus mixed-layer
atmospheric variables with radiometric tempera-
Lee, X., 1998: On micrometeorological observations
of surface-air exchange over tall vegetation, Agric.
For. Meteor., 91, 39–49.
Nitta, T. 1983: Observational study of heat sources
over the eastern Tibetan Plateau during the sum-
605.
Noilhan, J. and Planton, 1989: A simple parameteri-
zation of land surface processes for meteorologi-
Manabe and Terpstra 1974: The effects of mountains
on the general circulation of the atmosphere as
identified by numerical experiments. J. Atmos.
Sci., 31, 3–42.
Pielke R.A., 1984: The mesoscale meteorological mod-
Pleim, J.E. and Xiua A., 1995: Development and testing
of a surface flux and planetary boundary layer
model for application in mesoscale models, J.
Appl. Meteor., 34, 16–32.
transfer at the air-ground interface., Bulletin of
DPRI, Kyoto University, 28, 415–426.

