気象集誌. 第2輯
Online ISSN : 2186-9057
Print ISSN : 0026-1165
ISSN-L : 0026-1165

この記事には本公開記事があります。本公開記事を参照してください。
引用する場合も本公開記事を引用してください。

Broadening of Cloud Droplet Size Distributions by Condensation in Turbulence
SAITO IzumiGOTOH ToshiyukiWATANABE Takeshi
著者情報
ジャーナル フリー 早期公開

論文ID: 2019-049

この記事には本公開記事があります。
詳細
抄録

 To consider the growth of cloud droplets by condensation in turbulence, the Fokker-Planck equation is derived for the droplet size distribution (droplet spectrum). This is an extension of the statistical theory proposed by Chandrakar and coauthors in 2016 for explaining the broadening of the droplet spectrum obtained from the ‘Π-chamber', a laboratory cloud chamber. In this Fokker-Planck equation, the diffusion term represents the broadening effect of the supersaturation fluctuation on the droplet spectrum. The aerosol (curvature and solute) effects are introduced into the Fokker-Planck equation as the zero flux boundary condition at R2=0, where R is the droplet radius, which is mathematically equivalent to the case of Brownian motion in the presence of a wall. The analytical expression for the droplet spectrum in the steady state is obtained and shown to be proportional to Rexp(-cR2), where c is a constant. We conduct direct numerical simulations of cloud droplets in turbulence and show that the results agree closely with the theoretical predictions and, when the computational domain is large enough to be comparable to the Π-chamber, agree with the results from the Π-chamber as well. We also show that the diffusion coefficient in the Fokker-Planck equation should be expressed in terms of the Lagrangian autocorrelation time of the supersaturation fluctuation in turbulent flow.

著者関連情報
© The Author(s) 2019. This is an open access article published by the Meteorological Society of Japan under a Creative Commons Attribution 4.0 International (CC BY 4.0) license.
feedback
Top