Journal of the Meteorological Society of Japan. Ser. II
Online ISSN : 2186-9057
Print ISSN : 0026-1165
ISSN-L : 0026-1165

This article has now been updated. Please use the final version.

Future Changes in Summertime East Asian Monthly Precipitation in CMIP5 and Their Dependence on Present-day Model Climatology
Tomoaki OSE
Author information
JOURNAL FREE ACCESS Advance online publication

Article ID: 2019-055

Details
Abstract

  To investigate the dependence of future projections for summertime East Asian precipitation on their present-day model climatology, the models well reproducing the observed climatology over East Asia are focused on in the analysis of the fifth phase of the Coupled Model Intercomparison Project (CMIP5) future projections for the period 2075–2099 under the Representative Concentration Pathway 8.5 global warming scenario. The future projection by these models indicates that summertime monthly climatological precipitation in future East Asia is more likely systematically decreased in some regions rather than evenly increased in every wet region.

  The CMIP5 36-model ensemble mean monthly circulation change at 700 hPa is characterized through the future summertime by a cyclonic circulation change to the south of Japan and the associated downward motion changes around Japan. The models showing the above features more clearly tend to simulate stronger westerlies over East Asia and more tropical precipitation in the present-day northern summer climatology. Therefore, an ensemble of the models reproducing the observed westerlies over East Asia, which are stronger than the 36-model ensemble mean, tend to simulate a strong downward motion change regionally in the future East Asian summer so that the possibility of a decrease in monthly precipitation is enhanced there against the ‘wet-getting-wetter’ effect.

  The future circulation change over East Asia was considered as a part of the western North Pacific circulation change that responds to the future reduction of vertical motion in the vertically stabilized tropics. Large future reduction of the tropical vertical motion necessary for the strong downward motion change in East Asia can be attributed to the present-day climatology of much precipitation and large upward motion in the tropics.

Content from these authors
© The Author(s) 2019. This is an open access article published by the Meteorological Society of Japan under a Creative Commons Attribution 4.0 International (CC BY 4.0) license.
feedback
Top